【高等数学】多元微分学 (一)
偏导数
偏导数定义
- 如果二元函数 f f f 在 x 0 , y 0 x_0,y_0 x0,y0 的某邻域有定义, 且下述极限存在
lim Δ x → 0 f ( x 0 + Δ x , y 0 ) − f ( x 0 , y 0 ) Δ x \lim_{\Delta x\to 0} \frac{f(x_0+\Delta x,y_0)-f(x_0,y_0)}{\Delta x} Δx→0limΔxf(x0+Δx,y0)−f(x0,y0)
其极限称作 f f f 关于 x x x 的偏导数, 记为
∂ f ∂ x ∣ ( x 0 , y 0 ) = lim Δ x f ( x 0 + Δ x , y 0 ) − f ( x 0 , y 0 ) Δ x \frac{\partial f}{\partial x}|_{(x_0,y_0)}=\lim_{\Delta x} \frac{f(x_0+\Delta x,y_0)-f(x_0,y_0)}{\Delta x} ∂x∂f∣(x0,y0)=ΔxlimΔxf(x0+Δx,y0)−f(x0,y0)
类似的
∂ f ∂ y ∣ ( x 0 , y 0 ) = lim Δ y f ( x 0 , y 0 + Δ y ) − f ( x 0 , y 0 ) Δ y \frac{\partial f}{\partial y}|_{(x_0,y_0)}= \lim_{\Delta y} \frac{f(x_0,y_0+\Delta y)-f(x_0,y_0)}{\Delta y} ∂y∂f∣(x0,y0)=ΔylimΔyf(x0,y0+Δy)−f(x0,y0)
- n n n 元函数的偏导数 u = f ( x 1 , ⋯ , x n ) u=f(x_1,\cdots,x_n) u=f(x1,⋯,xn),
∂ f ∂ x i = lim Δ x i f ( x 1 , ⋯ , x i + Δ x i , ⋯ , x n ) − f ( x 1 , ⋯ , x i , ⋯ , x n ) Δ x i \frac{\partial f}{\partial x_i}= \lim_{\Delta x_i} \frac{f(x_1,\cdots, x_i+\Delta x_i, \cdots,x_n)-f(x_1,\cdots, x_i, \cdots, x_n)}{\Delta x_i} ∂xi∂f=ΔxilimΔxif(x1,⋯,xi+Δxi,⋯,xn)−f(x1,⋯,xi,⋯,xn)
导数性质 → \to → 偏导数性质
加 : ∂ ( f ( x , y ) + g ( x , y ) ) ∂ x = ∂ f ∂ x + ∂ g ∂ x 加:\frac{\partial (f(x,y)+g(x,y))}{\partial x}=\frac{\partial f}{\partial x}+\frac{\partial g}{\partial x} 加:∂x∂(f(x,y)+g(x,y))=∂x∂f+∂x∂g
减 : ∂ ( f ( x , y ) − g ( x , y ) ) ∂ x = ∂ f ∂ x − ∂ g ∂ x 减:\frac{\partial (f(x,y)-g(x,y))}{\partial x}=\frac{\partial f}{\partial x}-\frac{\partial g}{\partial x} 减:∂x∂(f(x,y)−g(x,y))=∂x∂f−∂x∂g
乘 : ∂ ( f ( x , y ) g ( x , y ) ) ∂ x = ∂ f ∂ x g + f ∂ g ∂ x 乘:\frac{\partial (f(x,y)g(x,y))}{\partial x}=\frac{\partial f}{\partial x} g+f\frac{\partial g}{\partial x} 乘:∂x∂(f(x,y)g(x,y))=∂x∂fg+f∂x∂g
除 : ∂ ( f ( x , y ) g ( x , y ) ) ∂ x = 1 g 2 ( ∂ f ∂ x g − f ∂ g ∂ x ) 除:\frac{\partial (\frac{f(x,y)}{g(x,y)})}{\partial x}=\frac{1}{g^2}\left(\frac{\partial f}{\partial x}g-f\frac{\partial g}{\partial x}\right) 除:∂x∂(g(x,y)f(x,y))=g21(∂x∂fg−f∂x∂g)
高阶偏导数
∂ 2 f ∂ x 2 = ∂ ∂ x ( ∂ f ∂ x ) \frac{\partial^2 f}{\partial x^2}= \frac{\partial}{\partial x}\left(\frac{\partial f}{\partial x}\right) ∂x2∂2f=∂x∂(∂x∂f)
∂ 2 f ∂ x ∂ y = ∂ ∂ y ( ∂ f ∂ x ) \frac{\partial^2 f}{\partial x\partial y}= \frac{\partial}{\partial y}\left(\frac{\partial f}{\partial x}\right) ∂x∂y∂2f=∂y∂(∂x∂f)
∂ 2 f ∂ y ∂ x = ∂ ∂ x ( ∂ f ∂ y ) \frac{\partial^2 f}{\partial y\partial x}= \frac{\partial}{\partial x}\left(\frac{\partial f}{\partial y}\right) ∂y∂x∂2f=∂x∂(∂y∂f)
∂ 2 f ∂ y 2 = ∂ ∂ y ( ∂ f ∂ y ) \frac{\partial^2 f}{\partial y^2}= \frac{\partial}{\partial y}\left(\frac{\partial f}{\partial y}\right) ∂y2∂2f=∂y∂(∂y∂f)
- 当 ∂ 2 f ∂ y ∂ x \frac{\partial^2 f}{\partial y\partial x} ∂y∂x∂2f, ∂ 2 f ∂ x ∂ y \frac{\partial^2 f}{\partial x\partial y} ∂x∂y∂2f 是连续函数时, ∂ 2 f ∂ y ∂ x = ∂ 2 f ∂ x ∂ y \frac{\partial^2 f}{\partial y\partial x}=\frac{\partial^2 f}{\partial x\partial y} ∂y∂x∂2f=∂x∂y∂2f.
全微分
u = f ( x , y ) u=f(x,y) u=f(x,y), $\Delta u= f(x+\Delta x, y+\Delta y)-f(x,y) $
定义 存在 A , B A,B A,B, Δ z = A Δ x + B Δ y + o ( ρ ) \Delta z= A\Delta x+B\Delta y+ o(\rho) Δz=AΔx+BΔy+o(ρ), ρ = ( Δ x ) 2 + ( Δ y ) 2 \rho=\sqrt{(\Delta x)^2+(\Delta y)^2} ρ=(Δx)2+(Δy)2, 称函数 f f f 在 ( x , y ) (x,y) (x,y) 处可微, d z d z dz 称为全微分, ( A , B ) (A,B) (A,B) 称为梯度.
当函数 f f f 可微时, d z = ∂ f ∂ x d x + ∂ f ∂ y d y dz= \frac{\partial f}{\partial x} dx+ \frac{\partial f}{\partial y}dy dz=∂x∂fdx+∂y∂fdy, 梯度计算公式为 ∇ f ( x , y ) = ( ∂ f ∂ x , ∂ f ∂ y ) ⊤ \nabla f(x,y)=(\frac{\partial f}{\partial x}, \frac{\partial f}{\partial y})^\top ∇f(x,y)=(∂x∂f,∂y∂f)⊤
微分性质 → \to → 全微分性质
可微函数:
加 : d ( f + g ) = d f + d g 加: d(f+g)=df+dg 加:d(f+g)=df+dg
减 : d ( f − g ) = d f − d g 减: d(f-g)=df-dg 减:d(f−g)=df−dg
乘 : d ( f g ) = g d f + f d g 乘: d(fg)= g df+f dg 乘:d(fg)=gdf+fdg
除 : d ( f g ) = g d f − f d g g 2 除:d\left(\frac{f}{g}\right)=\frac{g df- f dg}{g^2} 除:d(gf)=g2gdf−fdg
偏导数性质 → \to → 梯度性质
可微函数:
加 : ∇ ( f + g ) = ∇ f + ∇ g 加: \nabla (f+g)=\nabla f+\nabla g 加:∇(f+g)=∇f+∇g
减 : ∇ ( f − g ) = ∇ f − ∇ g 减: \nabla (f-g)=\nabla f-\nabla g 减:∇(f−g)=∇f−∇g
乘 : ∇ ( f g ) = g ∇ f + f ∇ g 乘: \nabla (fg)= g \nabla f+f \nabla g 乘:∇(fg)=g∇f+f∇g
除 : ∇ ( f g ) = g ∇ f − f ∇ g g 2 除:\nabla \left(\frac{f}{g}\right)=\frac{g \nabla f- f \nabla g}{g^2} 除:∇(gf)=g2g∇f−f∇g
当 ∂ f ∂ x \frac{\partial f}{\partial x} ∂x∂f, ∂ f ∂ y \frac{\partial f}{\partial y} ∂y∂f 是连续函数时, f ( x , y ) f(x,y) f(x,y) 可微.
复合函数的微分法
双层复合偏导
一元内嵌一元函数 (全导数)
- d d x f ( u ( x ) ) = d f d u d u d x \frac{d }{d x}f(u(x)) =\frac{d f}{d u}\frac{d u}{d x} dxdf(u(x))=dudfdxdu
一元内嵌二元函数
- ∂ ∂ x f ( u ( x , y ) ) = d f d u ∂ u ∂ x \frac{\partial }{\partial x}f(u(x,y)) =\frac{d f}{d u}\frac{\partial u}{\partial x} ∂x∂f(u(x,y))=dudf∂x∂u
- ∂ ∂ y f ( u ( x , y ) ) = d f d u ∂ u ∂ y \frac{\partial }{\partial y}f(u(x,y)) =\frac{d f}{d u}\frac{\partial u}{\partial y} ∂y∂f(u(x,y))=dudf∂y∂u
一元内嵌三元函数
- ∂ ∂ x f ( u ( x , y , z ) ) = d f d u ∂ u ∂ x \frac{\partial }{\partial x}f(u(x,y,z)) =\frac{d f}{d u}\frac{\partial u}{\partial x} ∂x∂f(u(x,y,z))=dudf∂x∂u
- ∂ ∂ y f ( u ( x , y , z ) ) = d f d u ∂ u ∂ y \frac{\partial }{\partial y}f(u(x,y,z)) =\frac{d f}{d u}\frac{\partial u}{\partial y} ∂y∂f(u(x,y,z))=dudf∂y∂u
- ∂ ∂ z f ( u ( x , y , z ) ) = d f d u ∂ u ∂ z \frac{\partial }{\partial z}f(u(x,y,z)) =\frac{d f}{d u}\frac{\partial u}{\partial z} ∂z∂f(u(x,y,z))=dudf∂z∂u
二元内嵌一元函数 (全导数)
- ∂ ∂ x f ( u ( x ) , v ( x ) ) = ∂ f ∂ u d u d x + ∂ f ∂ v d v d x \frac{\partial }{\partial x}f(u(x),v(x)) =\frac{\partial f}{\partial u}\frac{d u}{d x}+\frac{\partial f}{\partial v}\frac{d v}{d x} ∂x∂f(u(x),v(x))=∂u∂fdxdu+∂v∂fdxdv
二元内嵌二元函数
- ∂ ∂ x f ( u ( x , y ) , v ( x , y ) ) = ∂ f ∂ u ∂ u ∂ x + ∂ f ∂ v ∂ v ∂ x \frac{\partial }{\partial x}f(u(x,y),v(x,y)) =\frac{\partial f}{\partial u}\frac{\partial u}{\partial x}+\frac{\partial f}{\partial v}\frac{\partial v}{\partial x} ∂x∂f(u(x,y),v(x,y))=∂u∂f∂x∂u+∂v∂f∂x∂v
- ∂ ∂ y f ( u ( x , y ) , v ( x , y ) ) = ∂ f ∂ u ∂ u ∂ y + ∂ f ∂ v ∂ v ∂ y \frac{\partial }{\partial y}f(u(x,y),v(x,y)) =\frac{\partial f}{\partial u}\frac{\partial u}{\partial y}+\frac{\partial f}{\partial v}\frac{\partial v}{\partial y} ∂y∂f(u(x,y),v(x,y))=∂u∂f∂y∂u+∂v∂f∂y∂v
二元内嵌三元函数
-
∂ ∂ x f ( u ( x , y , z ) , v ( x , y , z ) ) = ∂ f ∂ u ∂ u ∂ x + ∂ f ∂ v ∂ v ∂ x \frac{\partial }{\partial x}f(u(x,y,z),v(x,y,z)) =\frac{\partial f}{\partial u}\frac{\partial u}{\partial x}+\frac{\partial f}{\partial v}\frac{\partial v}{\partial x} ∂x∂f(u(x,y,z),v(x,y,z))=∂u∂f∂x∂u+∂v∂f∂x∂v
-
∂ ∂ y f ( u ( x , y , z ) , v ( x , y , z ) ) = ∂ f ∂ u ∂ u ∂ y + ∂ f ∂ v ∂ v ∂ y \frac{\partial }{\partial y}f(u(x,y,z),v(x,y,z)) =\frac{\partial f}{\partial u}\frac{\partial u}{\partial y}+\frac{\partial f}{\partial v}\frac{\partial v}{\partial y} ∂y∂f(u(x,y,z),v(x,y,z))=∂u∂f∂y∂u+∂v∂f∂y∂v
-
∂ ∂ z f ( u ( x , y , z ) , v ( x , y , z ) ) = ∂ f ∂ u ∂ u ∂ z + ∂ f ∂ v ∂ v ∂ z \frac{\partial }{\partial z}f(u(x,y,z),v(x,y,z)) =\frac{\partial f}{\partial u}\frac{\partial u}{\partial z}+\frac{\partial f}{\partial v}\frac{\partial v}{\partial z} ∂z∂f(u(x,y,z),v(x,y,z))=∂u∂f∂z∂u+∂v∂f∂z∂v
三元内嵌一元函数 (全导数)
- ∂ ∂ x f ( u ( x ) , v ( x ) , w ( x ) ) = ∂ f ∂ u d u d x + ∂ f ∂ v d v d x + ∂ f ∂ w d w d x \frac{\partial }{\partial x}f(u(x),v(x),w(x)) =\frac{\partial f}{\partial u}\frac{d u}{d x}+\frac{\partial f}{\partial v}\frac{d v}{d x}+\frac{\partial f}{\partial w}\frac{d w}{d x} ∂x∂f(u(x),v(x),w(x))=∂u∂fdxdu+∂v∂fdxdv+∂w∂fdxdw
三元内嵌二元函数
-
∂ ∂ x f ( u ( x , y ) , v ( x , y ) , w ( x , y ) ) = ∂ f ∂ u ∂ u ∂ x + ∂ f ∂ v ∂ v ∂ x + ∂ f ∂ w ∂ w ∂ x \frac{\partial }{\partial x}f(u(x,y),v(x,y),w(x,y)) =\frac{\partial f}{\partial u}\frac{\partial u}{\partial x}+\frac{\partial f}{\partial v}\frac{\partial v}{\partial x}+\frac{\partial f}{\partial w}\frac{\partial w}{\partial x} ∂x∂f(u(x,y),v(x,y),w(x,y))=∂u∂f∂x∂u+∂v∂f∂x∂v+∂w∂f∂x∂w
-
∂ ∂ y f ( u ( x , y ) , v ( x , y ) , w ( x , y ) ) = ∂ f ∂ u ∂ u ∂ y + ∂ f ∂ v ∂ v ∂ y + ∂ f ∂ w ∂ w ∂ y \frac{\partial }{\partial y}f(u(x,y),v(x,y),w(x,y)) =\frac{\partial f}{\partial u}\frac{\partial u}{\partial y}+\frac{\partial f}{\partial v}\frac{\partial v}{\partial y}+\frac{\partial f}{\partial w}\frac{\partial w}{\partial y} ∂y∂f(u(x,y),v(x,y),w(x,y))=∂u∂f∂y∂u+∂v∂f∂y∂v+∂w∂f∂y∂w
三元内嵌三元函数
-
∂ ∂ x f ( u ( x , y , z ) , v ( x , y , z ) , w ( x , y , z ) ) = ∂ f ∂ u ∂ u ∂ x + ∂ f ∂ v ∂ v ∂ x + ∂ f ∂ w ∂ w ∂ x \frac{\partial}{\partial x}f(u(x,y,z),v(x,y,z),w(x,y,z)) =\frac{\partial f}{\partial u}\frac{\partial u}{\partial x}+\frac{\partial f}{\partial v}\frac{\partial v}{\partial x}+\frac{\partial f}{\partial w}\frac{\partial w}{\partial x} ∂x∂f(u(x,y,z),v(x,y,z),w(x,y,z))=∂u∂f∂x∂u+∂v∂f∂x∂v+∂w∂f∂x∂w
-
∂ ∂ y f ( u ( x , y , z ) , v ( x , y , z ) , w ( x , y , z ) ) = ∂ f ∂ u ∂ u ∂ y + ∂ f ∂ v ∂ v ∂ y + ∂ f ∂ w ∂ w ∂ y \frac{\partial}{\partial y}f(u(x,y,z),v(x,y,z),w(x,y,z)) =\frac{\partial f}{\partial u}\frac{\partial u}{\partial y}+\frac{\partial f}{\partial v}\frac{\partial v}{\partial y}+\frac{\partial f}{\partial w}\frac{\partial w}{\partial y} ∂y∂f(u(x,y,z),v(x,y,z),w(x,y,z))=∂u∂f∂y∂u+∂v∂f∂y∂v+∂w∂f∂y∂w
-
∂ ∂ z f ( u ( x , y , z ) , v ( x , y , z ) , w ( x , y , z ) ) = ∂ f ∂ u ∂ u ∂ z + ∂ f ∂ v ∂ v ∂ z + ∂ f ∂ w ∂ w ∂ z \frac{\partial}{\partial z}f(u(x,y,z),v(x,y,z),w(x,y,z)) =\frac{\partial f}{\partial u}\frac{\partial u}{\partial z}+\frac{\partial f}{\partial v}\frac{\partial v}{\partial z}+\frac{\partial f}{\partial w}\frac{\partial w}{\partial z} ∂z∂f(u(x,y,z),v(x,y,z),w(x,y,z))=∂u∂f∂z∂u+∂v∂f∂z∂v+∂w∂f∂z∂w
(选看) 三层复合偏导
二元内嵌二元内嵌二元函数
-
∂ ∂ s f ( u ( x ( s , t ) , y ( s , t ) ) , v ( x ( s , t ) , y ( s , t ) ) ) = ∂ f ∂ u ( ∂ u ∂ x ∂ x ∂ s + ∂ u ∂ y ∂ y ∂ s ) + ∂ f ∂ v ( ∂ v ∂ x ∂ x ∂ s + ∂ v ∂ y ∂ y ∂ s ) \frac{\partial }{\partial s}f(u(x(s,t),y(s,t)),v(x(s,t),y(s,t))) = \frac{\partial f}{\partial u}(\frac{\partial u}{\partial x}\frac{\partial x}{\partial s}+\frac{\partial u}{\partial y}\frac{\partial y}{\partial s})+\frac{\partial f}{\partial v}(\frac{\partial v}{\partial x}\frac{\partial x}{\partial s}+\frac{\partial v}{\partial y}\frac{\partial y}{\partial s}) ∂s∂f(u(x(s,t),y(s,t)),v(x(s,t),y(s,t)))=∂u∂f(∂x∂u∂s∂x+∂y∂u∂s∂y)+∂v∂f(∂x∂v∂s∂x+∂y∂v∂s∂y)
-
∂ ∂ t f ( u ( x ( s , t ) , y ( s , t ) ) , v ( x ( s , t ) , y ( s , t ) ) ) = ∂ f ∂ u ( ∂ u ∂ x ∂ x ∂ t + ∂ u ∂ y ∂ y ∂ t ) + ∂ f ∂ v ( ∂ v ∂ x ∂ x ∂ t + ∂ v ∂ y ∂ y ∂ t ) \frac{\partial }{\partial t}f(u(x(s,t),y(s,t)),v(x(s,t),y(s,t))) = \frac{\partial f}{\partial u}(\frac{\partial u}{\partial x}\frac{\partial x}{\partial t}+\frac{\partial u}{\partial y}\frac{\partial y}{\partial t})+\frac{\partial f}{\partial v}(\frac{\partial v}{\partial x}\frac{\partial x}{\partial t}+\frac{\partial v}{\partial y}\frac{\partial y}{\partial t}) ∂t∂f(u(x(s,t),y(s,t)),v(x(s,t),y(s,t)))=∂u∂f(∂x∂u∂t∂x+∂y∂u∂t∂y)+∂v∂f(∂x∂v∂t∂x+∂y∂v∂t∂y)
相关文章:
【高等数学】多元微分学 (一)
偏导数 偏导数定义 如果二元函数 f f f 在 x 0 , y 0 x_0,y_0 x0,y0 的某邻域有定义, 且下述极限存在 lim Δ x → 0 f ( x 0 Δ x , y 0 ) − f ( x 0 , y 0 ) Δ x \lim_{\Delta x\to 0} \frac{f(x_0\Delta x,y_0)-f(x_0,y_0)}{\Delta x} Δx→0limΔxf(x0Δ…...
Python爬取京东商品信息,详细讲解,手把手教学(附源码)
Python 爬虫爬取京东商品信息 下面我将逐一解释每一部分的代码 导入库 from selenium import webdriver from selenium.webdriver.edge.service import Service from selenium.webdriver.edge.options import Options import time import random import csv from selenium.c…...
大家有没有了解过TLKS-PLGS这款接地电阻在线监测装置?它在电力系统中能发挥什么作用呢?
接地电阻在线监测仪(输电铁塔接地电阻监测装置、变电站接地电阻监测装置、三极法接地网电阻监测装置)在电力系统中发挥着至关重要的作用,具体来说,有以下几个方面: 一、实时监测预警。该装置采用激励脉冲技术…...
Shell中的函数
目录 一、系统函数 (一)前言 (二)常用的函数 basename [string/pathname] [suffix] 二、自定义函数 (一)语法 (二)脚本例子 三、函数实际案例 过程中的报错: …...
通过IP地址或者主机名添加打印机20241023
文印室打印机连接方式20241023 Win键盘搜索打印机和扫描仪点击添加打印机或扫描仪,等候片刻点击“我需要的打印机不在列表中”添加打印机,选择使用IP地址或主机名添加打印机点击下一步,设备类型选择自动检测输入主机名:即打印机有…...
基于SpringBoot+Vue智慧养老关爱系统【提供源码+答辩PPT+参考文档+项目部署】
💥 这两年毕业设计和毕业答辩的要求和难度不断提升,传统的JavaWeb项目缺少创新和亮点,往往达不到毕业答辩的要求! ❗如何解决这类问题? 让我们能够顺利通过毕业,我也一直在不断思考、努力、精进。通过2024年…...
新手教学系列——利用短效代理快速搭建代理池
引言 在进行高并发数据抓取时,很多人都会遇到频繁IP被封的问题。要解决这个问题,代理池的搭建就成了关键。通过频繁更换代理IP,我们可以绕过网站的反爬机制,提升抓取效率。然而,很多初学者可能会觉得构建一个健壮的代理池颇为复杂,尤其是需要快速切换的短效代理池。在这…...
实体与DTO如何转换
下面是一些常用的转换库: Dozer 该项目目前不活跃,并且很可能在未来被弃用。 ModelMapper 一个智能对象映射库,可自动将对象相互映射。它采用基于约定的方法,同时提供简单、重构安全的应用程序接口(API)来…...
Docker 安装Postgres和PostGIS,并制作镜像
1. 查找postgres和postgis现有的镜像和版本号 镜像搜索网站:https://docker.aityp.com/ 测试使用的是postgres:15.4 和 postgis:15-3.4 2、镜像拉取 docker pull postgres:15.4docker pull postgis/postgis:15-3.4镜像下载完成,docker images 查看如…...
ES6:let和const命令解读以及变量的解构赋值
有时候,我们需要的不是答案,而是一双倾听的耳朵 文章目录 let和const命令变量的解构赋值 let和const命令 let和const命令都是声明变量的关键字,类同varlet特点 用来声明变量,不能再次定义,但是值可以改变存在块级作用…...
java-collection集合整理0.9.4
java-集合整理0.9.0 基本结构基本概念实例化举例遍历获取指定值 2024年10月17日09:43:16–0.9.0 2024年10月18日11:00:59—0.9.4 基本结构 Collection 是最顶级的接口。分为 List 和 Set 两大类。List 分为:ArrayList、LinkedList、Vector。Set 分为:Ha…...
ParallelsDesktop20最新版本虚拟机 一键切换系统 游戏娱乐两不误
让工作生活更高效:Parallels Desktop 20最新版本虚拟机的神奇之处 大家好!👋 今天我要跟大家安利一款让我工作效率飞升的神器——Parallels Desktop 20最新版本虚拟机。作为一个日常需要在不同操作系统间来回穿梭的人,这款软件简直…...
现代C语言:C23标准重大更新
虽然没有固定标准,但一般将C99之后的C语言标准称为“现代C语言”,目前的最新标准为C23。C语言的演化包括标准C89、C90、C99、C11、C17和C23,C23是C语言标准的一次重大修订,截至2024年3月,最新版本的gcc和 clang实现了C…...
Maven进阶——坐标、依赖、仓库
目录 1.pomxml文件 2. 坐标 2.1 坐标的概念 2.2 坐标的意义 2.3 坐标的含义 2.4 自己项目的坐标 2.5 第三方项目坐标 3. 依赖 3.1 依赖的意义 3.2 依赖的使用 3.3 第三方依赖的查找方法 3.4 依赖范围 3.5 依赖传递和可选依赖 3.5.1 依赖传递 3.5.2 依赖范围对传…...
Android中的内存泄漏及其检测方式
Android中的内存泄漏及其检测方式 一、Android内存泄漏概述 在Android开发中,内存泄漏是一个常见且严重的问题。内存泄漏指的是在应用程序中,由于某些原因,已经不再使用的对象仍然被引用,导致垃圾回收器(Garbage Col…...
【雷电模拟器命令合集操作大全】官方文档整理贴
此贴是官方的帮助整理文档在这里插入代码片 一起来看看几个主要命令,大部分命令读者可以自己试试~ 1、launch 支持2种启动雷电模拟器的方式 –name顾名思义,应该是模拟器的标题栏的名字,本人经过验证果然如此! –index mnq_idx,模…...
redis的配置文件解析
我的后端学习大纲 我的Redis学习大纲 1.1.Redis的配置文件: 1.Redis的配置文件名称是:redis.conf 2.在vim这个配置文件的时候,默认是不显示行号的,可以编辑下面这个文件,末尾加上set nu,就会显示行号: 1.…...
Python中的元组和列表
Python 列表 Python有6个序列的内置类型,但最常见的是列表和元组。 列表是最常用的Python数据类型,它可以作为一个方括号内的逗号分隔值出现。 列表的数据项不需要具有相同的类型 创建一个列表,只要把逗号分隔的不同的数据项使用方括号…...
【AI战略思考7】粮草筹集完毕和我的朋友分类
注明:这是我昨晚12点多发布在朋友圈的,更新加工后的版本 粮草筹集完毕 统计完成 昨晚从7点半到晚上11点,借款的意向统计完成了,刚好凑够6个月😄,我觉得应该够了,我乐观估计是3个月内找到工作&…...
科大讯飞AI开发者大赛颁奖典礼,万码优才荣获前三甲!
在近日揭晓的科大讯飞AI开发者大赛中,万码优才APP凭借其卓越的技术实力、创新的应用方案以及深厚的行业洞察力,在上百个参赛队伍中脱颖而出,在AI Agent助力行业应用升级赛道荣获三甲排名!再次证明了其在人工智能领域的领先地位与无…...
深度学习在微纳光子学中的应用
深度学习在微纳光子学中的主要应用方向 深度学习与微纳光子学的结合主要集中在以下几个方向: 逆向设计 通过神经网络快速预测微纳结构的光学响应,替代传统耗时的数值模拟方法。例如设计超表面、光子晶体等结构。 特征提取与优化 从复杂的光学数据中自…...
【机器视觉】单目测距——运动结构恢复
ps:图是随便找的,为了凑个封面 前言 在前面对光流法进行进一步改进,希望将2D光流推广至3D场景流时,发现2D转3D过程中存在尺度歧义问题,需要补全摄像头拍摄图像中缺失的深度信息,否则解空间不收敛…...
Nginx server_name 配置说明
Nginx 是一个高性能的反向代理和负载均衡服务器,其核心配置之一是 server 块中的 server_name 指令。server_name 决定了 Nginx 如何根据客户端请求的 Host 头匹配对应的虚拟主机(Virtual Host)。 1. 简介 Nginx 使用 server_name 指令来确定…...
vue3 定时器-定义全局方法 vue+ts
1.创建ts文件 路径:src/utils/timer.ts 完整代码: import { onUnmounted } from vuetype TimerCallback (...args: any[]) > voidexport function useGlobalTimer() {const timers: Map<number, NodeJS.Timeout> new Map()// 创建定时器con…...
【Web 进阶篇】优雅的接口设计:统一响应、全局异常处理与参数校验
系列回顾: 在上一篇中,我们成功地为应用集成了数据库,并使用 Spring Data JPA 实现了基本的 CRUD API。我们的应用现在能“记忆”数据了!但是,如果你仔细审视那些 API,会发现它们还很“粗糙”:有…...
DBAPI如何优雅的获取单条数据
API如何优雅的获取单条数据 案例一 对于查询类API,查询的是单条数据,比如根据主键ID查询用户信息,sql如下: select id, name, age from user where id #{id}API默认返回的数据格式是多条的,如下: {&qu…...
什么是Ansible Jinja2
理解 Ansible Jinja2 模板 Ansible 是一款功能强大的开源自动化工具,可让您无缝地管理和配置系统。Ansible 的一大亮点是它使用 Jinja2 模板,允许您根据变量数据动态生成文件、配置设置和脚本。本文将向您介绍 Ansible 中的 Jinja2 模板,并通…...
佰力博科技与您探讨热释电测量的几种方法
热释电的测量主要涉及热释电系数的测定,这是表征热释电材料性能的重要参数。热释电系数的测量方法主要包括静态法、动态法和积分电荷法。其中,积分电荷法最为常用,其原理是通过测量在电容器上积累的热释电电荷,从而确定热释电系数…...
Spring是如何解决Bean的循环依赖:三级缓存机制
1、什么是 Bean 的循环依赖 在 Spring框架中,Bean 的循环依赖是指多个 Bean 之间互相持有对方引用,形成闭环依赖关系的现象。 多个 Bean 的依赖关系构成环形链路,例如: 双向依赖:Bean A 依赖 Bean B,同时 Bean B 也依赖 Bean A(A↔B)。链条循环: Bean A → Bean…...
Redis:现代应用开发的高效内存数据存储利器
一、Redis的起源与发展 Redis最初由意大利程序员Salvatore Sanfilippo在2009年开发,其初衷是为了满足他自己的一个项目需求,即需要一个高性能的键值存储系统来解决传统数据库在高并发场景下的性能瓶颈。随着项目的开源,Redis凭借其简单易用、…...
