【高等数学】多元微分学 (一)
偏导数
偏导数定义
- 如果二元函数 f f f 在 x 0 , y 0 x_0,y_0 x0,y0 的某邻域有定义, 且下述极限存在
lim Δ x → 0 f ( x 0 + Δ x , y 0 ) − f ( x 0 , y 0 ) Δ x \lim_{\Delta x\to 0} \frac{f(x_0+\Delta x,y_0)-f(x_0,y_0)}{\Delta x} Δx→0limΔxf(x0+Δx,y0)−f(x0,y0)
其极限称作 f f f 关于 x x x 的偏导数, 记为
∂ f ∂ x ∣ ( x 0 , y 0 ) = lim Δ x f ( x 0 + Δ x , y 0 ) − f ( x 0 , y 0 ) Δ x \frac{\partial f}{\partial x}|_{(x_0,y_0)}=\lim_{\Delta x} \frac{f(x_0+\Delta x,y_0)-f(x_0,y_0)}{\Delta x} ∂x∂f∣(x0,y0)=ΔxlimΔxf(x0+Δx,y0)−f(x0,y0)
类似的
∂ f ∂ y ∣ ( x 0 , y 0 ) = lim Δ y f ( x 0 , y 0 + Δ y ) − f ( x 0 , y 0 ) Δ y \frac{\partial f}{\partial y}|_{(x_0,y_0)}= \lim_{\Delta y} \frac{f(x_0,y_0+\Delta y)-f(x_0,y_0)}{\Delta y} ∂y∂f∣(x0,y0)=ΔylimΔyf(x0,y0+Δy)−f(x0,y0)
- n n n 元函数的偏导数 u = f ( x 1 , ⋯ , x n ) u=f(x_1,\cdots,x_n) u=f(x1,⋯,xn),
∂ f ∂ x i = lim Δ x i f ( x 1 , ⋯ , x i + Δ x i , ⋯ , x n ) − f ( x 1 , ⋯ , x i , ⋯ , x n ) Δ x i \frac{\partial f}{\partial x_i}= \lim_{\Delta x_i} \frac{f(x_1,\cdots, x_i+\Delta x_i, \cdots,x_n)-f(x_1,\cdots, x_i, \cdots, x_n)}{\Delta x_i} ∂xi∂f=ΔxilimΔxif(x1,⋯,xi+Δxi,⋯,xn)−f(x1,⋯,xi,⋯,xn)
导数性质 → \to → 偏导数性质
加 : ∂ ( f ( x , y ) + g ( x , y ) ) ∂ x = ∂ f ∂ x + ∂ g ∂ x 加:\frac{\partial (f(x,y)+g(x,y))}{\partial x}=\frac{\partial f}{\partial x}+\frac{\partial g}{\partial x} 加:∂x∂(f(x,y)+g(x,y))=∂x∂f+∂x∂g
减 : ∂ ( f ( x , y ) − g ( x , y ) ) ∂ x = ∂ f ∂ x − ∂ g ∂ x 减:\frac{\partial (f(x,y)-g(x,y))}{\partial x}=\frac{\partial f}{\partial x}-\frac{\partial g}{\partial x} 减:∂x∂(f(x,y)−g(x,y))=∂x∂f−∂x∂g
乘 : ∂ ( f ( x , y ) g ( x , y ) ) ∂ x = ∂ f ∂ x g + f ∂ g ∂ x 乘:\frac{\partial (f(x,y)g(x,y))}{\partial x}=\frac{\partial f}{\partial x} g+f\frac{\partial g}{\partial x} 乘:∂x∂(f(x,y)g(x,y))=∂x∂fg+f∂x∂g
除 : ∂ ( f ( x , y ) g ( x , y ) ) ∂ x = 1 g 2 ( ∂ f ∂ x g − f ∂ g ∂ x ) 除:\frac{\partial (\frac{f(x,y)}{g(x,y)})}{\partial x}=\frac{1}{g^2}\left(\frac{\partial f}{\partial x}g-f\frac{\partial g}{\partial x}\right) 除:∂x∂(g(x,y)f(x,y))=g21(∂x∂fg−f∂x∂g)
高阶偏导数
∂ 2 f ∂ x 2 = ∂ ∂ x ( ∂ f ∂ x ) \frac{\partial^2 f}{\partial x^2}= \frac{\partial}{\partial x}\left(\frac{\partial f}{\partial x}\right) ∂x2∂2f=∂x∂(∂x∂f)
∂ 2 f ∂ x ∂ y = ∂ ∂ y ( ∂ f ∂ x ) \frac{\partial^2 f}{\partial x\partial y}= \frac{\partial}{\partial y}\left(\frac{\partial f}{\partial x}\right) ∂x∂y∂2f=∂y∂(∂x∂f)
∂ 2 f ∂ y ∂ x = ∂ ∂ x ( ∂ f ∂ y ) \frac{\partial^2 f}{\partial y\partial x}= \frac{\partial}{\partial x}\left(\frac{\partial f}{\partial y}\right) ∂y∂x∂2f=∂x∂(∂y∂f)
∂ 2 f ∂ y 2 = ∂ ∂ y ( ∂ f ∂ y ) \frac{\partial^2 f}{\partial y^2}= \frac{\partial}{\partial y}\left(\frac{\partial f}{\partial y}\right) ∂y2∂2f=∂y∂(∂y∂f)
- 当 ∂ 2 f ∂ y ∂ x \frac{\partial^2 f}{\partial y\partial x} ∂y∂x∂2f, ∂ 2 f ∂ x ∂ y \frac{\partial^2 f}{\partial x\partial y} ∂x∂y∂2f 是连续函数时, ∂ 2 f ∂ y ∂ x = ∂ 2 f ∂ x ∂ y \frac{\partial^2 f}{\partial y\partial x}=\frac{\partial^2 f}{\partial x\partial y} ∂y∂x∂2f=∂x∂y∂2f.
全微分
u = f ( x , y ) u=f(x,y) u=f(x,y), $\Delta u= f(x+\Delta x, y+\Delta y)-f(x,y) $
定义 存在 A , B A,B A,B, Δ z = A Δ x + B Δ y + o ( ρ ) \Delta z= A\Delta x+B\Delta y+ o(\rho) Δz=AΔx+BΔy+o(ρ), ρ = ( Δ x ) 2 + ( Δ y ) 2 \rho=\sqrt{(\Delta x)^2+(\Delta y)^2} ρ=(Δx)2+(Δy)2, 称函数 f f f 在 ( x , y ) (x,y) (x,y) 处可微, d z d z dz 称为全微分, ( A , B ) (A,B) (A,B) 称为梯度.
当函数 f f f 可微时, d z = ∂ f ∂ x d x + ∂ f ∂ y d y dz= \frac{\partial f}{\partial x} dx+ \frac{\partial f}{\partial y}dy dz=∂x∂fdx+∂y∂fdy, 梯度计算公式为 ∇ f ( x , y ) = ( ∂ f ∂ x , ∂ f ∂ y ) ⊤ \nabla f(x,y)=(\frac{\partial f}{\partial x}, \frac{\partial f}{\partial y})^\top ∇f(x,y)=(∂x∂f,∂y∂f)⊤
微分性质 → \to → 全微分性质
可微函数:
加 : d ( f + g ) = d f + d g 加: d(f+g)=df+dg 加:d(f+g)=df+dg
减 : d ( f − g ) = d f − d g 减: d(f-g)=df-dg 减:d(f−g)=df−dg
乘 : d ( f g ) = g d f + f d g 乘: d(fg)= g df+f dg 乘:d(fg)=gdf+fdg
除 : d ( f g ) = g d f − f d g g 2 除:d\left(\frac{f}{g}\right)=\frac{g df- f dg}{g^2} 除:d(gf)=g2gdf−fdg
偏导数性质 → \to → 梯度性质
可微函数:
加 : ∇ ( f + g ) = ∇ f + ∇ g 加: \nabla (f+g)=\nabla f+\nabla g 加:∇(f+g)=∇f+∇g
减 : ∇ ( f − g ) = ∇ f − ∇ g 减: \nabla (f-g)=\nabla f-\nabla g 减:∇(f−g)=∇f−∇g
乘 : ∇ ( f g ) = g ∇ f + f ∇ g 乘: \nabla (fg)= g \nabla f+f \nabla g 乘:∇(fg)=g∇f+f∇g
除 : ∇ ( f g ) = g ∇ f − f ∇ g g 2 除:\nabla \left(\frac{f}{g}\right)=\frac{g \nabla f- f \nabla g}{g^2} 除:∇(gf)=g2g∇f−f∇g
当 ∂ f ∂ x \frac{\partial f}{\partial x} ∂x∂f, ∂ f ∂ y \frac{\partial f}{\partial y} ∂y∂f 是连续函数时, f ( x , y ) f(x,y) f(x,y) 可微.
复合函数的微分法
双层复合偏导
一元内嵌一元函数 (全导数)
- d d x f ( u ( x ) ) = d f d u d u d x \frac{d }{d x}f(u(x)) =\frac{d f}{d u}\frac{d u}{d x} dxdf(u(x))=dudfdxdu
一元内嵌二元函数
- ∂ ∂ x f ( u ( x , y ) ) = d f d u ∂ u ∂ x \frac{\partial }{\partial x}f(u(x,y)) =\frac{d f}{d u}\frac{\partial u}{\partial x} ∂x∂f(u(x,y))=dudf∂x∂u
- ∂ ∂ y f ( u ( x , y ) ) = d f d u ∂ u ∂ y \frac{\partial }{\partial y}f(u(x,y)) =\frac{d f}{d u}\frac{\partial u}{\partial y} ∂y∂f(u(x,y))=dudf∂y∂u
一元内嵌三元函数
- ∂ ∂ x f ( u ( x , y , z ) ) = d f d u ∂ u ∂ x \frac{\partial }{\partial x}f(u(x,y,z)) =\frac{d f}{d u}\frac{\partial u}{\partial x} ∂x∂f(u(x,y,z))=dudf∂x∂u
- ∂ ∂ y f ( u ( x , y , z ) ) = d f d u ∂ u ∂ y \frac{\partial }{\partial y}f(u(x,y,z)) =\frac{d f}{d u}\frac{\partial u}{\partial y} ∂y∂f(u(x,y,z))=dudf∂y∂u
- ∂ ∂ z f ( u ( x , y , z ) ) = d f d u ∂ u ∂ z \frac{\partial }{\partial z}f(u(x,y,z)) =\frac{d f}{d u}\frac{\partial u}{\partial z} ∂z∂f(u(x,y,z))=dudf∂z∂u
二元内嵌一元函数 (全导数)
- ∂ ∂ x f ( u ( x ) , v ( x ) ) = ∂ f ∂ u d u d x + ∂ f ∂ v d v d x \frac{\partial }{\partial x}f(u(x),v(x)) =\frac{\partial f}{\partial u}\frac{d u}{d x}+\frac{\partial f}{\partial v}\frac{d v}{d x} ∂x∂f(u(x),v(x))=∂u∂fdxdu+∂v∂fdxdv
二元内嵌二元函数
- ∂ ∂ x f ( u ( x , y ) , v ( x , y ) ) = ∂ f ∂ u ∂ u ∂ x + ∂ f ∂ v ∂ v ∂ x \frac{\partial }{\partial x}f(u(x,y),v(x,y)) =\frac{\partial f}{\partial u}\frac{\partial u}{\partial x}+\frac{\partial f}{\partial v}\frac{\partial v}{\partial x} ∂x∂f(u(x,y),v(x,y))=∂u∂f∂x∂u+∂v∂f∂x∂v
- ∂ ∂ y f ( u ( x , y ) , v ( x , y ) ) = ∂ f ∂ u ∂ u ∂ y + ∂ f ∂ v ∂ v ∂ y \frac{\partial }{\partial y}f(u(x,y),v(x,y)) =\frac{\partial f}{\partial u}\frac{\partial u}{\partial y}+\frac{\partial f}{\partial v}\frac{\partial v}{\partial y} ∂y∂f(u(x,y),v(x,y))=∂u∂f∂y∂u+∂v∂f∂y∂v
二元内嵌三元函数
-
∂ ∂ x f ( u ( x , y , z ) , v ( x , y , z ) ) = ∂ f ∂ u ∂ u ∂ x + ∂ f ∂ v ∂ v ∂ x \frac{\partial }{\partial x}f(u(x,y,z),v(x,y,z)) =\frac{\partial f}{\partial u}\frac{\partial u}{\partial x}+\frac{\partial f}{\partial v}\frac{\partial v}{\partial x} ∂x∂f(u(x,y,z),v(x,y,z))=∂u∂f∂x∂u+∂v∂f∂x∂v
-
∂ ∂ y f ( u ( x , y , z ) , v ( x , y , z ) ) = ∂ f ∂ u ∂ u ∂ y + ∂ f ∂ v ∂ v ∂ y \frac{\partial }{\partial y}f(u(x,y,z),v(x,y,z)) =\frac{\partial f}{\partial u}\frac{\partial u}{\partial y}+\frac{\partial f}{\partial v}\frac{\partial v}{\partial y} ∂y∂f(u(x,y,z),v(x,y,z))=∂u∂f∂y∂u+∂v∂f∂y∂v
-
∂ ∂ z f ( u ( x , y , z ) , v ( x , y , z ) ) = ∂ f ∂ u ∂ u ∂ z + ∂ f ∂ v ∂ v ∂ z \frac{\partial }{\partial z}f(u(x,y,z),v(x,y,z)) =\frac{\partial f}{\partial u}\frac{\partial u}{\partial z}+\frac{\partial f}{\partial v}\frac{\partial v}{\partial z} ∂z∂f(u(x,y,z),v(x,y,z))=∂u∂f∂z∂u+∂v∂f∂z∂v
三元内嵌一元函数 (全导数)
- ∂ ∂ x f ( u ( x ) , v ( x ) , w ( x ) ) = ∂ f ∂ u d u d x + ∂ f ∂ v d v d x + ∂ f ∂ w d w d x \frac{\partial }{\partial x}f(u(x),v(x),w(x)) =\frac{\partial f}{\partial u}\frac{d u}{d x}+\frac{\partial f}{\partial v}\frac{d v}{d x}+\frac{\partial f}{\partial w}\frac{d w}{d x} ∂x∂f(u(x),v(x),w(x))=∂u∂fdxdu+∂v∂fdxdv+∂w∂fdxdw
三元内嵌二元函数
-
∂ ∂ x f ( u ( x , y ) , v ( x , y ) , w ( x , y ) ) = ∂ f ∂ u ∂ u ∂ x + ∂ f ∂ v ∂ v ∂ x + ∂ f ∂ w ∂ w ∂ x \frac{\partial }{\partial x}f(u(x,y),v(x,y),w(x,y)) =\frac{\partial f}{\partial u}\frac{\partial u}{\partial x}+\frac{\partial f}{\partial v}\frac{\partial v}{\partial x}+\frac{\partial f}{\partial w}\frac{\partial w}{\partial x} ∂x∂f(u(x,y),v(x,y),w(x,y))=∂u∂f∂x∂u+∂v∂f∂x∂v+∂w∂f∂x∂w
-
∂ ∂ y f ( u ( x , y ) , v ( x , y ) , w ( x , y ) ) = ∂ f ∂ u ∂ u ∂ y + ∂ f ∂ v ∂ v ∂ y + ∂ f ∂ w ∂ w ∂ y \frac{\partial }{\partial y}f(u(x,y),v(x,y),w(x,y)) =\frac{\partial f}{\partial u}\frac{\partial u}{\partial y}+\frac{\partial f}{\partial v}\frac{\partial v}{\partial y}+\frac{\partial f}{\partial w}\frac{\partial w}{\partial y} ∂y∂f(u(x,y),v(x,y),w(x,y))=∂u∂f∂y∂u+∂v∂f∂y∂v+∂w∂f∂y∂w
三元内嵌三元函数
-
∂ ∂ x f ( u ( x , y , z ) , v ( x , y , z ) , w ( x , y , z ) ) = ∂ f ∂ u ∂ u ∂ x + ∂ f ∂ v ∂ v ∂ x + ∂ f ∂ w ∂ w ∂ x \frac{\partial}{\partial x}f(u(x,y,z),v(x,y,z),w(x,y,z)) =\frac{\partial f}{\partial u}\frac{\partial u}{\partial x}+\frac{\partial f}{\partial v}\frac{\partial v}{\partial x}+\frac{\partial f}{\partial w}\frac{\partial w}{\partial x} ∂x∂f(u(x,y,z),v(x,y,z),w(x,y,z))=∂u∂f∂x∂u+∂v∂f∂x∂v+∂w∂f∂x∂w
-
∂ ∂ y f ( u ( x , y , z ) , v ( x , y , z ) , w ( x , y , z ) ) = ∂ f ∂ u ∂ u ∂ y + ∂ f ∂ v ∂ v ∂ y + ∂ f ∂ w ∂ w ∂ y \frac{\partial}{\partial y}f(u(x,y,z),v(x,y,z),w(x,y,z)) =\frac{\partial f}{\partial u}\frac{\partial u}{\partial y}+\frac{\partial f}{\partial v}\frac{\partial v}{\partial y}+\frac{\partial f}{\partial w}\frac{\partial w}{\partial y} ∂y∂f(u(x,y,z),v(x,y,z),w(x,y,z))=∂u∂f∂y∂u+∂v∂f∂y∂v+∂w∂f∂y∂w
-
∂ ∂ z f ( u ( x , y , z ) , v ( x , y , z ) , w ( x , y , z ) ) = ∂ f ∂ u ∂ u ∂ z + ∂ f ∂ v ∂ v ∂ z + ∂ f ∂ w ∂ w ∂ z \frac{\partial}{\partial z}f(u(x,y,z),v(x,y,z),w(x,y,z)) =\frac{\partial f}{\partial u}\frac{\partial u}{\partial z}+\frac{\partial f}{\partial v}\frac{\partial v}{\partial z}+\frac{\partial f}{\partial w}\frac{\partial w}{\partial z} ∂z∂f(u(x,y,z),v(x,y,z),w(x,y,z))=∂u∂f∂z∂u+∂v∂f∂z∂v+∂w∂f∂z∂w
(选看) 三层复合偏导
二元内嵌二元内嵌二元函数
-
∂ ∂ s f ( u ( x ( s , t ) , y ( s , t ) ) , v ( x ( s , t ) , y ( s , t ) ) ) = ∂ f ∂ u ( ∂ u ∂ x ∂ x ∂ s + ∂ u ∂ y ∂ y ∂ s ) + ∂ f ∂ v ( ∂ v ∂ x ∂ x ∂ s + ∂ v ∂ y ∂ y ∂ s ) \frac{\partial }{\partial s}f(u(x(s,t),y(s,t)),v(x(s,t),y(s,t))) = \frac{\partial f}{\partial u}(\frac{\partial u}{\partial x}\frac{\partial x}{\partial s}+\frac{\partial u}{\partial y}\frac{\partial y}{\partial s})+\frac{\partial f}{\partial v}(\frac{\partial v}{\partial x}\frac{\partial x}{\partial s}+\frac{\partial v}{\partial y}\frac{\partial y}{\partial s}) ∂s∂f(u(x(s,t),y(s,t)),v(x(s,t),y(s,t)))=∂u∂f(∂x∂u∂s∂x+∂y∂u∂s∂y)+∂v∂f(∂x∂v∂s∂x+∂y∂v∂s∂y)
-
∂ ∂ t f ( u ( x ( s , t ) , y ( s , t ) ) , v ( x ( s , t ) , y ( s , t ) ) ) = ∂ f ∂ u ( ∂ u ∂ x ∂ x ∂ t + ∂ u ∂ y ∂ y ∂ t ) + ∂ f ∂ v ( ∂ v ∂ x ∂ x ∂ t + ∂ v ∂ y ∂ y ∂ t ) \frac{\partial }{\partial t}f(u(x(s,t),y(s,t)),v(x(s,t),y(s,t))) = \frac{\partial f}{\partial u}(\frac{\partial u}{\partial x}\frac{\partial x}{\partial t}+\frac{\partial u}{\partial y}\frac{\partial y}{\partial t})+\frac{\partial f}{\partial v}(\frac{\partial v}{\partial x}\frac{\partial x}{\partial t}+\frac{\partial v}{\partial y}\frac{\partial y}{\partial t}) ∂t∂f(u(x(s,t),y(s,t)),v(x(s,t),y(s,t)))=∂u∂f(∂x∂u∂t∂x+∂y∂u∂t∂y)+∂v∂f(∂x∂v∂t∂x+∂y∂v∂t∂y)
相关文章:
【高等数学】多元微分学 (一)
偏导数 偏导数定义 如果二元函数 f f f 在 x 0 , y 0 x_0,y_0 x0,y0 的某邻域有定义, 且下述极限存在 lim Δ x → 0 f ( x 0 Δ x , y 0 ) − f ( x 0 , y 0 ) Δ x \lim_{\Delta x\to 0} \frac{f(x_0\Delta x,y_0)-f(x_0,y_0)}{\Delta x} Δx→0limΔxf(x0Δ…...
Python爬取京东商品信息,详细讲解,手把手教学(附源码)
Python 爬虫爬取京东商品信息 下面我将逐一解释每一部分的代码 导入库 from selenium import webdriver from selenium.webdriver.edge.service import Service from selenium.webdriver.edge.options import Options import time import random import csv from selenium.c…...
大家有没有了解过TLKS-PLGS这款接地电阻在线监测装置?它在电力系统中能发挥什么作用呢?
接地电阻在线监测仪(输电铁塔接地电阻监测装置、变电站接地电阻监测装置、三极法接地网电阻监测装置)在电力系统中发挥着至关重要的作用,具体来说,有以下几个方面: 一、实时监测预警。该装置采用激励脉冲技术…...
Shell中的函数
目录 一、系统函数 (一)前言 (二)常用的函数 basename [string/pathname] [suffix] 二、自定义函数 (一)语法 (二)脚本例子 三、函数实际案例 过程中的报错: …...
通过IP地址或者主机名添加打印机20241023
文印室打印机连接方式20241023 Win键盘搜索打印机和扫描仪点击添加打印机或扫描仪,等候片刻点击“我需要的打印机不在列表中”添加打印机,选择使用IP地址或主机名添加打印机点击下一步,设备类型选择自动检测输入主机名:即打印机有…...
基于SpringBoot+Vue智慧养老关爱系统【提供源码+答辩PPT+参考文档+项目部署】
💥 这两年毕业设计和毕业答辩的要求和难度不断提升,传统的JavaWeb项目缺少创新和亮点,往往达不到毕业答辩的要求! ❗如何解决这类问题? 让我们能够顺利通过毕业,我也一直在不断思考、努力、精进。通过2024年…...
新手教学系列——利用短效代理快速搭建代理池
引言 在进行高并发数据抓取时,很多人都会遇到频繁IP被封的问题。要解决这个问题,代理池的搭建就成了关键。通过频繁更换代理IP,我们可以绕过网站的反爬机制,提升抓取效率。然而,很多初学者可能会觉得构建一个健壮的代理池颇为复杂,尤其是需要快速切换的短效代理池。在这…...
实体与DTO如何转换
下面是一些常用的转换库: Dozer 该项目目前不活跃,并且很可能在未来被弃用。 ModelMapper 一个智能对象映射库,可自动将对象相互映射。它采用基于约定的方法,同时提供简单、重构安全的应用程序接口(API)来…...
Docker 安装Postgres和PostGIS,并制作镜像
1. 查找postgres和postgis现有的镜像和版本号 镜像搜索网站:https://docker.aityp.com/ 测试使用的是postgres:15.4 和 postgis:15-3.4 2、镜像拉取 docker pull postgres:15.4docker pull postgis/postgis:15-3.4镜像下载完成,docker images 查看如…...
ES6:let和const命令解读以及变量的解构赋值
有时候,我们需要的不是答案,而是一双倾听的耳朵 文章目录 let和const命令变量的解构赋值 let和const命令 let和const命令都是声明变量的关键字,类同varlet特点 用来声明变量,不能再次定义,但是值可以改变存在块级作用…...
java-collection集合整理0.9.4
java-集合整理0.9.0 基本结构基本概念实例化举例遍历获取指定值 2024年10月17日09:43:16–0.9.0 2024年10月18日11:00:59—0.9.4 基本结构 Collection 是最顶级的接口。分为 List 和 Set 两大类。List 分为:ArrayList、LinkedList、Vector。Set 分为:Ha…...
ParallelsDesktop20最新版本虚拟机 一键切换系统 游戏娱乐两不误
让工作生活更高效:Parallels Desktop 20最新版本虚拟机的神奇之处 大家好!👋 今天我要跟大家安利一款让我工作效率飞升的神器——Parallels Desktop 20最新版本虚拟机。作为一个日常需要在不同操作系统间来回穿梭的人,这款软件简直…...
现代C语言:C23标准重大更新
虽然没有固定标准,但一般将C99之后的C语言标准称为“现代C语言”,目前的最新标准为C23。C语言的演化包括标准C89、C90、C99、C11、C17和C23,C23是C语言标准的一次重大修订,截至2024年3月,最新版本的gcc和 clang实现了C…...
Maven进阶——坐标、依赖、仓库
目录 1.pomxml文件 2. 坐标 2.1 坐标的概念 2.2 坐标的意义 2.3 坐标的含义 2.4 自己项目的坐标 2.5 第三方项目坐标 3. 依赖 3.1 依赖的意义 3.2 依赖的使用 3.3 第三方依赖的查找方法 3.4 依赖范围 3.5 依赖传递和可选依赖 3.5.1 依赖传递 3.5.2 依赖范围对传…...
Android中的内存泄漏及其检测方式
Android中的内存泄漏及其检测方式 一、Android内存泄漏概述 在Android开发中,内存泄漏是一个常见且严重的问题。内存泄漏指的是在应用程序中,由于某些原因,已经不再使用的对象仍然被引用,导致垃圾回收器(Garbage Col…...
【雷电模拟器命令合集操作大全】官方文档整理贴
此贴是官方的帮助整理文档在这里插入代码片 一起来看看几个主要命令,大部分命令读者可以自己试试~ 1、launch 支持2种启动雷电模拟器的方式 –name顾名思义,应该是模拟器的标题栏的名字,本人经过验证果然如此! –index mnq_idx,模…...
redis的配置文件解析
我的后端学习大纲 我的Redis学习大纲 1.1.Redis的配置文件: 1.Redis的配置文件名称是:redis.conf 2.在vim这个配置文件的时候,默认是不显示行号的,可以编辑下面这个文件,末尾加上set nu,就会显示行号: 1.…...
Python中的元组和列表
Python 列表 Python有6个序列的内置类型,但最常见的是列表和元组。 列表是最常用的Python数据类型,它可以作为一个方括号内的逗号分隔值出现。 列表的数据项不需要具有相同的类型 创建一个列表,只要把逗号分隔的不同的数据项使用方括号…...
【AI战略思考7】粮草筹集完毕和我的朋友分类
注明:这是我昨晚12点多发布在朋友圈的,更新加工后的版本 粮草筹集完毕 统计完成 昨晚从7点半到晚上11点,借款的意向统计完成了,刚好凑够6个月😄,我觉得应该够了,我乐观估计是3个月内找到工作&…...
科大讯飞AI开发者大赛颁奖典礼,万码优才荣获前三甲!
在近日揭晓的科大讯飞AI开发者大赛中,万码优才APP凭借其卓越的技术实力、创新的应用方案以及深厚的行业洞察力,在上百个参赛队伍中脱颖而出,在AI Agent助力行业应用升级赛道荣获三甲排名!再次证明了其在人工智能领域的领先地位与无…...
观成科技:隐蔽隧道工具Ligolo-ng加密流量分析
1.工具介绍 Ligolo-ng是一款由go编写的高效隧道工具,该工具基于TUN接口实现其功能,利用反向TCP/TLS连接建立一条隐蔽的通信信道,支持使用Let’s Encrypt自动生成证书。Ligolo-ng的通信隐蔽性体现在其支持多种连接方式,适应复杂网…...
基于大模型的 UI 自动化系统
基于大模型的 UI 自动化系统 下面是一个完整的 Python 系统,利用大模型实现智能 UI 自动化,结合计算机视觉和自然语言处理技术,实现"看屏操作"的能力。 系统架构设计 #mermaid-svg-2gn2GRvh5WCP2ktF {font-family:"trebuchet ms",verdana,arial,sans-…...
线程与协程
1. 线程与协程 1.1. “函数调用级别”的切换、上下文切换 1. 函数调用级别的切换 “函数调用级别的切换”是指:像函数调用/返回一样轻量地完成任务切换。 举例说明: 当你在程序中写一个函数调用: funcA() 然后 funcA 执行完后返回&…...
Mobile ALOHA全身模仿学习
一、题目 Mobile ALOHA:通过低成本全身远程操作学习双手移动操作 传统模仿学习(Imitation Learning)缺点:聚焦与桌面操作,缺乏通用任务所需的移动性和灵活性 本论文优点:(1)在ALOHA…...
华硕a豆14 Air香氛版,美学与科技的馨香融合
在快节奏的现代生活中,我们渴望一个能激发创想、愉悦感官的工作与生活伙伴,它不仅是冰冷的科技工具,更能触动我们内心深处的细腻情感。正是在这样的期许下,华硕a豆14 Air香氛版翩然而至,它以一种前所未有的方式&#x…...
「全栈技术解析」推客小程序系统开发:从架构设计到裂变增长的完整解决方案
在移动互联网营销竞争白热化的当下,推客小程序系统凭借其裂变传播、精准营销等特性,成为企业抢占市场的利器。本文将深度解析推客小程序系统开发的核心技术与实现路径,助力开发者打造具有市场竞争力的营销工具。 一、系统核心功能架构&…...
云安全与网络安全:核心区别与协同作用解析
在数字化转型的浪潮中,云安全与网络安全作为信息安全的两大支柱,常被混淆但本质不同。本文将从概念、责任分工、技术手段、威胁类型等维度深入解析两者的差异,并探讨它们的协同作用。 一、核心区别 定义与范围 网络安全:聚焦于保…...
Python学习(8) ----- Python的类与对象
Python 中的类(Class)与对象(Object)是面向对象编程(OOP)的核心。我们可以通过“类是模板,对象是实例”来理解它们的关系。 🧱 一句话理解: 类就像“图纸”,对…...
Django RBAC项目后端实战 - 03 DRF权限控制实现
项目背景 在上一篇文章中,我们完成了JWT认证系统的集成。本篇文章将实现基于Redis的RBAC权限控制系统,为系统提供细粒度的权限控制。 开发目标 实现基于Redis的权限缓存机制开发DRF权限控制类实现权限管理API配置权限白名单 前置配置 在开始开发权限…...
欢乐熊大话蓝牙知识17:多连接 BLE 怎么设计服务不会乱?分层思维来救场!
多连接 BLE 怎么设计服务不会乱?分层思维来救场! 作者按: 你是不是也遇到过 BLE 多连接时,调试现场像网吧“掉线风暴”? 温度传感器连上了,心率带丢了;一边 OTA 更新,一边通知卡壳。…...
