Elasticsearch 与 Lucene 的区别和联系
Elasticsearch 与 Lucene 的区别和联系
- Elasticsearch 与 Lucene 的区别和联系
- 一、知识背景
- Elasticsearch 简介
- Lucene 简介
- 二、Elasticsearch 和 Lucene 的区别
- 适用场景
- 性能优势和劣势
- 架构设计的异同点
- 三、Elasticsearch和Lucene的联系
- 四、Elasticsearch和Lucene的应用案例及方向
Elasticsearch 与 Lucene 的区别和联系
一、知识背景
Elasticsearch 和 Lucene 是两个与搜索引擎相关的开源项目
Elasticsearch 简介
Elasticsearch 是一个基于 Lucene 的分布式搜索和分析引擎。它提供了一个简单易用的 RESTful API,使得数据的索引、搜索和分析变得非常简单。Elasticsearch 具有高可扩展性和高可用性,可以处理大规模的数据。
Lucene 简介
Lucene 是一个 Java 开发的全文搜索引擎库。它提供了一套强大的 API,可以用于创建、索引和搜索文档。Lucene 的设计理念是高性能和可扩展性,它可以在单机上处理大量的文档。
二、Elasticsearch 和 Lucene 的区别
Elasticsearch 和 Lucene 在功能和设计上有一些区别,下面将对它们进行详细比较。
适用场景
Elasticsearch 适用于需要处理大规模数据的场景,特别是在分布式环境下。它可以快速索引和搜索大量的文档,并提供了丰富的查询语言和聚合功能。而 Lucene 更适合在单机环境下进行全文搜索,它可以处理较小规模的数据。
性能优势和劣势
Elasticsearch 相对于 Lucene 在性能上有一些优势和劣势。首先,Elasticsearch 可以水平扩展,通过添加更多的节点来处理更多的数据和请求。其次,Elasticsearch 提供了分布式搜索和聚合功能,可以在多个节点上并行执行查询。然而,由于 Elasticsearch 是基于 Lucene 构建的,它的性能受限于 Lucene 的一些限制,比如在写入数据时的延迟。
架构设计的异同点
Elasticsearch 和 Lucene 在架构设计上也有一些异同。Elasticsearch 使用分布式架构,将数据分片存储在多个节点上,每个节点负责处理部分数据。它还提供了主从复制机制,确保数据的高可用性。而 Lucene 是一个本地的搜索引擎库,数据存储在单机上。它的设计更加简单,适合在单机环境下进行搜索。
import org.elasticsearch.client.RestClient;
import org.elasticsearch.client.RestHighLevelClient;
import org.elasticsearch.action.index.IndexRequest;
import org.elasticsearch.action.index.IndexResponse;
import org.elasticsearch.action.search.SearchRequest;
import org.elasticsearch.action.search.SearchResponse;
import org.elasticsearch.index.query.QueryBuilders;
import org.elasticsearch.search.builder.SearchSourceBuilder;public class ElasticsearchExample {public static void main(String[] args) {// 创建 Elasticsearch 客户端RestHighLevelClient client = new RestHighLevelClient(RestClient.builder(new HttpHost("localhost", 9200, "http")));try {// 索引文档IndexRequest request = new IndexRequest("my_index");request.id("1");request.source("title", "Hello World", "content", "This is a sample document");IndexResponse response = client.index(request);// 搜索文档SearchRequest searchRequest = new SearchRequest("my_index");SearchSourceBuilder searchSourceBuilder = new SearchSourceBuilder();searchSourceBuilder.query(QueryBuilders.matchQuery("content", "sample"));searchRequest.source(searchSourceBuilder);SearchResponse searchResponse = client.search(searchRequest);// 处理搜索结果// ...// 关闭客户端client.close();} catch (Exception e) {e.printStackTrace();}}
}
三、Elasticsearch和Lucene的联系
Elasticsearch是基于Lucene实现的。Lucene是一个开源的全文搜索引擎库,而Elasticsearch是一个基于Lucene的分布式搜索和分析引擎。
在Elasticsearch中,Lucene的分词器和查询解析器被广泛使用。分词器负责将文本拆分成单词,以便建立倒排索引。查询解析器则负责将用户的查询语句解析成可执行的查询操作。
Elasticsearch和Lucene共同工作,提供搜索服务功能。Elasticsearch通过将数据分片和复制到多个节点上实现水平扩展,并提供了分布式的搜索和数据分析能力。Lucene负责实际的索引和搜索操作,提供高效的全文搜索功能。
四、Elasticsearch和Lucene的应用案例及方向
Elasticsearch和Lucene在搜索领域有许多成功的应用案例。它们被广泛用于构建搜索引擎、日志分析、电子商务、社交媒体分析等领域。
在搜索引擎领域,Elasticsearch和Lucene被用于构建全文搜索引擎,如网页搜索引擎和企业内部搜索引擎。它们能够快速地索引和搜索大量的文本数据,并提供高效的搜索结果。
在日志分析领域,Elasticsearch和Lucene被用于处理和分析大量的日志数据。通过将日志数据索引到Elasticsearch中,可以方便地进行日志搜索、过滤和聚合等操作,帮助用户快速定位和解决问题。
在电子商务领域,Elasticsearch和Lucene被用于构建商品搜索和推荐系统。通过对商品信息建立索引,并利用分布式的搜索和排序功能,可以提供准确和快速的商品搜索和推荐服务。
在社交媒体分析领域,Elasticsearch和Lucene被用于处理和分析社交媒体数据。通过将社交媒体数据索引到Elasticsearch中,可以进行实时的数据分析和可视化,帮助用户了解用户行为和趋势。
未来,Elasticsearch和Lucene在搜索领域的应用将继续扩展。随着大数据和人工智能的发展,对于高效的全文搜索和数据分析的需求将越来越大,Elasticsearch和Lucene将继续发挥重要作用,并不断提供更加强大和灵活的搜索服务。
import org.apache.lucene.analysis.Analyzer;
import org.apache.lucene.analysis.cn.smart.SmartChineseAnalyzer;
import org.apache.lucene.queryparser.classic.QueryParser;
import org.apache.lucene.search.Query;
import org.apache.lucene.search.TopDocs;
import org.elasticsearch.client.RequestOptions;
import org.elasticsearch.client.RestClient;
import org.elasticsearch.client.RestHighLevelClient;
import org.elasticsearch.index.query.QueryBuilders;
import org.elasticsearch.search.builder.SearchSourceBuilder;
import org.elasticsearch.search.sort.SortOrder;import java.io.IOException;public class ElasticsearchLuceneExample {private static final String INDEX_NAME = "my_index";private static final String FIELD_NAME = "content";public static void main(String[] args) throws IOException {// 创建Elasticsearch高级客户端RestHighLevelClient client = new RestHighLevelClient(RestClient.builder("localhost:9200"));// 创建Lucene分词器Analyzer analyzer = new SmartChineseAnalyzer();// 创建Lucene查询解析器QueryParser parser = new QueryParser(FIELD_NAME, analyzer);// 创建Lucene查询Query query = parser.parse("关键词");// 创建Elasticsearch搜索请求SearchSourceBuilder sourceBuilder = new SearchSourceBuilder();sourceBuilder.query(QueryBuilders.matchQuery(FIELD_NAME, query));sourceBuilder.sort("date", SortOrder.DESC);sourceBuilder.from(0);sourceBuilder.size(10);// 执行Elasticsearch搜索TopDocs topDocs = client.search(INDEX_NAME, sourceBuilder, RequestOptions.DEFAULT);// 处理搜索结果// ...// 关闭Elasticsearch客户端client.close();}
}
相关文章:
Elasticsearch 与 Lucene 的区别和联系
Elasticsearch 与 Lucene 的区别和联系 Elasticsearch 与 Lucene 的区别和联系一、知识背景Elasticsearch 简介Lucene 简介 二、Elasticsearch 和 Lucene 的区别适用场景性能优势和劣势架构设计的异同点 三、Elasticsearch和Lucene的联系四、Elasticsearch和Lucene的应用案例及…...
OpenCV视觉分析之运动分析(5)背景减除类BackgroundSubtractorMOG2的使用
操作系统:ubuntu22.04 OpenCV版本:OpenCV4.9 IDE:Visual Studio Code 编程语言:C11 算法描述 基于高斯混合模型的背景/前景分割算法。 该类实现了在文献[320]和[319]中描述的高斯混合模型背景减除。 cv::BackgroundSubtractorMOG2 类是 O…...
【SAP Hana】X-DOC:数据仓库ETL如何抽取SAP中的CDS视图数据
【SAP Hana】X-DOC:数据仓库ETL如何抽取SAP中的CDS视图数据 1、无参CDS对应数据库视图2、有参CDS对应数据库表函数3、封装有参CDS为无参CDS,从而对应数据库视图 1、无参CDS对应数据库视图 select * from ZFCML_REP_V where mandt 300;2、有参CDS对应数…...
WPF的UpdateSourceTrigger属性
在WPF中,UpdateSourceTrigger属性用于控制数据绑定中何时将绑定目标(通常是UI元素)的值更新回绑定源(通常是数据对象)。这个属性有以下几个值: Default:这是默认值,对于不同的绑定目…...
2024-09-25 环境变量,进程地址空间
一、认识常见的环境变量 1. echo $HOME 输出当前用户对应的家目录 当用户登录系统时,流程如下: (1)用户登录系统后,系统启动Shell程序。 (2)启动bash shell,准备接收用户指令。 &a…...
中国移动机器人将投入养老场景;华为与APUS共筑AI医疗多场景应用
AgeTech News 一周行业大事件 华为与APUS合作,共筑AI医疗多场景应用 中国移动展出人形机器人,预计投入养老等场景 作为科技与奥富能签约,共拓智能适老化改造领域 天与养老与香港科技园,共探智慧养老新模式 中山大学合作中国…...
青少年编程能力等级测评CPA C++ 四级试卷(1)
青少年编程能力等级测评CPA C 四级试卷(1) 一、单项选择题(共15题,每题3分,共45分) CP4_1_1.在面向对象程序设计中,与数据构成一个相互依存的整体的是( )。 A. 对数据…...
树上任意两点的距离
题目描述 给出 n 个点的一棵树,多次询问两点之间的最短距离。 注意:边是双向的。 输入描述 第一行为两个整数 n 和 m。n 表示点数,m 表示询问次数; 下来 n−1 行,每行三个整数 x,y,k,表示点 x 和点 y 之间…...
【 thinkphp8 】00008 thinkphp8数据查询,常用table,name方法,进行数据查询汇总
前言:哈喽,大家好,今天给大家分享一篇文章!并提供具体代码帮助大家深入理解,彻底掌握!创作不易,如果能帮助到大家或者给大家一些灵感和启发,欢迎收藏关注哦 💕 目录 【 t…...
Git的命令合集
关于Git的一些命令合集,会慢慢更新! 20241024程序员节开始写的,记录一下~~ git查看log、查看详细提交记录 会显示之前的提交记录 , 排序由近及远 git log log按q退出 git回退到某个commit命令: 退到/进到指定commit的sha码&…...
博客搭建之路:hexo搜索引擎收录
文章目录 hexo搜索引擎收录以百度为例 hexo搜索引擎收录 hexo版本5.0.2 npm版本6.14.7 next版本7.8.0 写博客的目的肯定不是就只有自己能看到,想让更多的人看到就需要可以让搜索引擎来收录对应的文章。hexo支持生成站点地图sitemap 在hexo下的_config.yml中配置站点…...
创建Windows系统还原点
系统保护...
Linux等保测评需要用到的命令
三权设置 查看账户情况 cd /home/ ll 设置审计账户 useradd shenji passwd shenji 修改密码 passwd新密码 设置管理账户 useradd guanli passwd guanli compgen -u 查看用户 切换到root账户 su root 设置审计用户权限 vim /etc/sudoers shenji ALL (root) NOPASSWD:…...
PostgreSQL的学习心得和知识总结(一百五十六)|auto_explain — log execution plans of slow queries
目录结构 注:提前言明 本文借鉴了以下博主、书籍或网站的内容,其列表如下: 1、参考书籍:《PostgreSQL数据库内核分析》 2、参考书籍:《数据库事务处理的艺术:事务管理与并发控制》 3、PostgreSQL数据库仓库…...
数据结构模板代码合集(不完整)
P3368 【模板】树状数组 2 #include <bits/stdc.h> using namespace std; const int maxn 5e5 7;int n, m, s, t; int ans; int a[maxn]; struct node{int l, r;int num; }tr[maxn * 4];void build(int p, int l, int r){tr[p] {l, r, 0};if(l r){tr[p].num a[l];r…...
shell脚本语法详解
目录 shell语法基础 指定shell解析器 注释 运行 变量 定义变量 引用变量 清除变量值 从键盘获取值 输入单值 添加输入提示语 读取多值 编辑 定义只读变量 环境变量 设置环境变量与查看环境变量 特殊变量 三种引号的作用与区别 小括号与大括号 参数传递 位…...
2021亚洲机器学习会议:面向单阶段跨域检测的域自适应YOLO(ACML2021)
原文标题:Domain Adaptive YOLO for One-Stage Cross-Domain Detection 中文标题:面向单阶段跨域检测的域自适应YOLO 1、Abstract 域转移是目标检测器在实际应用中推广的主要挑战。两级检测器的域自适应新兴技术有助于解决这个问题。然而,两级…...
面试题:描述在前端开发中,如何利用数据结构来优化页面渲染性能,并给出一个具体的示例。
在前端开发中,优化页面渲染性能是提升用户体验的关键之一。合理地使用数据结构可以有效地减少DOM操作的次数、提高数据处理的效率,从而加快页面的渲染速度。以下是一些策略,并给出一个具体的示例。 1. 使用合适的数据结构 数组与对象&#…...
微积分复习笔记 Calculus Volume 1 - 3.2 he Derivative as a Function
3.2 The Derivative as a Function - Calculus Volume 1 | OpenStax...
html 轮播图效果
轮播效果: 1、鼠标没有移入到banner,自动轮播 2、鼠标移入:取消自动轮播、移除开始自动轮播 3、点击指示点开始轮播到对应位置 4、点击前一个后一个按钮,轮播到上一个下一个图片 注意 最后一个图片无缝滚动,就是先克隆第一个图片…...
使用docker在3台服务器上搭建基于redis 6.x的一主两从三台均是哨兵模式
一、环境及版本说明 如果服务器已经安装了docker,则忽略此步骤,如果没有安装,则可以按照一下方式安装: 1. 在线安装(有互联网环境): 请看我这篇文章 传送阵>> 点我查看 2. 离线安装(内网环境):请看我这篇文章 传送阵>> 点我查看 说明:假设每台服务器已…...
SciencePlots——绘制论文中的图片
文章目录 安装一、风格二、1 资源 安装 # 安装最新版 pip install githttps://github.com/garrettj403/SciencePlots.git# 安装稳定版 pip install SciencePlots一、风格 简单好用的深度学习论文绘图专用工具包–Science Plot 二、 1 资源 论文绘图神器来了:一行…...
无法与IP建立连接,未能下载VSCode服务器
如题,在远程连接服务器的时候突然遇到了这个提示。 查阅了一圈,发现是VSCode版本自动更新惹的祸!!! 在VSCode的帮助->关于这里发现前几天VSCode自动更新了,我的版本号变成了1.100.3 才导致了远程连接出…...
【第二十一章 SDIO接口(SDIO)】
第二十一章 SDIO接口 目录 第二十一章 SDIO接口(SDIO) 1 SDIO 主要功能 2 SDIO 总线拓扑 3 SDIO 功能描述 3.1 SDIO 适配器 3.2 SDIOAHB 接口 4 卡功能描述 4.1 卡识别模式 4.2 卡复位 4.3 操作电压范围确认 4.4 卡识别过程 4.5 写数据块 4.6 读数据块 4.7 数据流…...
Nuxt.js 中的路由配置详解
Nuxt.js 通过其内置的路由系统简化了应用的路由配置,使得开发者可以轻松地管理页面导航和 URL 结构。路由配置主要涉及页面组件的组织、动态路由的设置以及路由元信息的配置。 自动路由生成 Nuxt.js 会根据 pages 目录下的文件结构自动生成路由配置。每个文件都会对…...
2025盘古石杯决赛【手机取证】
前言 第三届盘古石杯国际电子数据取证大赛决赛 最后一题没有解出来,实在找不到,希望有大佬教一下我。 还有就会议时间,我感觉不是图片时间,因为在电脑看到是其他时间用老会议系统开的会。 手机取证 1、分析鸿蒙手机检材&#x…...
什么是EULA和DPA
文章目录 EULA(End User License Agreement)DPA(Data Protection Agreement)一、定义与背景二、核心内容三、法律效力与责任四、实际应用与意义 EULA(End User License Agreement) 定义: EULA即…...
微软PowerBI考试 PL300-在 Power BI 中清理、转换和加载数据
微软PowerBI考试 PL300-在 Power BI 中清理、转换和加载数据 Power Query 具有大量专门帮助您清理和准备数据以供分析的功能。 您将了解如何简化复杂模型、更改数据类型、重命名对象和透视数据。 您还将了解如何分析列,以便知晓哪些列包含有价值的数据,…...
Angular微前端架构:Module Federation + ngx-build-plus (Webpack)
以下是一个完整的 Angular 微前端示例,其中使用的是 Module Federation 和 npx-build-plus 实现了主应用(Shell)与子应用(Remote)的集成。 🛠️ 项目结构 angular-mf/ ├── shell-app/ # 主应用&…...
HDFS分布式存储 zookeeper
hadoop介绍 狭义上hadoop是指apache的一款开源软件 用java语言实现开源框架,允许使用简单的变成模型跨计算机对大型集群进行分布式处理(1.海量的数据存储 2.海量数据的计算)Hadoop核心组件 hdfs(分布式文件存储系统)&a…...
