CUDA-求最大值最小值atomicMaxatomicMin
作者:翟天保Steven
版权声明:著作权归作者所有,商业转载请联系作者获得授权,非商业转载请注明出处
实现原理
atomicMax和 atomicMin是 CUDA 中的原子操作,用于在并行计算中安全地更新共享变量的最大值和最小值。它们确保在多线程环境中,多个线程对同一个变量的访问不会导致数据竞争。使用 atomicMax可以在一个线程中比较当前值与新值,并在新值更大时更新,而 atomicMin则是用于比较和更新最小值。这些操作对于需要从多个线程中汇总结果的应用至关重要,能够确保最终结果的准确性。
本文将通过一个实战案例,进行atomic求最值的展示。
(注意本文案例基于OpenCV实现,因为我工作围绕各类图像展开,这样方便些,但是对CUDA而言,核心部分与OpenCV无关,可根据自身场景和数据结构进行更改。)
C++测试代码
ImageProcessing.cuh
#pragma once
#include <cuda_runtime.h>
#include <iostream>
#include <vector>
#include <opencv2/opencv.hpp>
#include <device_launch_parameters.h>using namespace cv;
using namespace std;#define TILE_WIDTH 16// 预准备过程
void warmupCUDA();// 图像最值计算-CPU
void calcMaxMin_CPU(cv::Mat input, uchar &maxV, uchar &minV);// 图像最值计算-GPU
void calcMaxMin_GPU(cv::Mat input, uchar &maxV, uchar &minV);
ImageProcessing.cu
#include "ImageProcessing.cuh"// 预准备过程
void warmupCUDA()
{float* dummy_data;cudaMalloc((void**)&dummy_data, sizeof(float));cudaFree(dummy_data);
}// 图像最值计算-CPU
void calcMaxMin_CPU(cv::Mat input, uchar &maxV, uchar &minV)
{int row = input.rows;int col = input.cols;// 初始化最值maxV = 0;minV = 255;for (int i = 0; i < row; ++i){for (int j = 0; j < col; ++j){if (input.at<uchar>(i, j) > maxV){maxV = input.at<uchar>(i, j);}if (input.at<uchar>(i, j) < minV){minV = input.at<uchar>(i, j);}}}
}// 获取最大最小值核函数
__global__ void getMaxMinValue_CUDA(uchar* inputImage, int width, int height, int *maxV, int *minV)
{int row = blockIdx.y * blockDim.y + threadIdx.y;int col = blockIdx.x * blockDim.x + threadIdx.x;if (row < height && col < width){atomicMax(maxV, int(inputImage[row * width + col]));atomicMin(minV, int(inputImage[row * width + col]));}
}// 图像最值计算-GPU
void calcMaxMin_GPU(cv::Mat input, uchar &maxV, uchar &minV)
{int row = input.rows;int col = input.cols;// 定义计时器float spendtime = 0.0f;cudaEvent_t start, end;cudaEventCreate(&start);cudaEventCreate(&end);// 分配GPU内存 uchar* d_inputImage;cudaMalloc(&d_inputImage, row * col * sizeof(uchar));// 将输入图像数据从主机内存复制到GPU内存cudaMemcpy(d_inputImage, input.data, row * col * sizeof(uchar), cudaMemcpyHostToDevice);// 计算块和线程的大小dim3 blockSize(TILE_WIDTH, TILE_WIDTH);dim3 gridSize((col + blockSize.x - 1) / blockSize.x, (row + blockSize.y - 1) / blockSize.y);// 求最值int h_maxValue = 0;int h_minValue = 255;int *d_maxValue;int *d_minValue;cudaMalloc((void**)&d_maxValue, sizeof(int));cudaMalloc((void**)&d_minValue, sizeof(int));cudaMemcpy(d_maxValue, &h_maxValue, sizeof(int), cudaMemcpyHostToDevice);cudaMemcpy(d_minValue, &h_minValue, sizeof(int), cudaMemcpyHostToDevice);getMaxMinValue_CUDA << <gridSize, blockSize >> > (d_inputImage, col, row, d_maxValue, d_minValue);cudaMemcpy(&h_maxValue, d_maxValue, sizeof(int), cudaMemcpyDeviceToHost);cudaMemcpy(&h_minValue, d_minValue, sizeof(int), cudaMemcpyDeviceToHost);maxV = uchar(h_maxValue);minV = uchar(h_minValue);
}
main.cpp
#include "ImageProcessing.cuh"void main()
{// 预准备warmupCUDA();cout << "calcMaxMin test begin." << endl;// 加载cv::Mat src = imread("test pic/test5.jpg", 0);// 调整数据区间cv::Mat src2;cv::normalize(src, src2, 20, 230, NORM_MINMAX);// CPU版本clock_t s1, e1;s1 = clock();uchar maxV1, minV1;calcMaxMin_CPU(src2, maxV1, minV1);e1 = clock();cout << "CPU time:" << double(e1 - s1) << "ms" << endl;cout << "maxV1:" << int(maxV1) << endl;cout << "minV1:" << int(minV1) << endl;// GPU版本clock_t s2, e2;s2 = clock();uchar maxV2, minV2;calcMaxMin_GPU(src2, maxV2, minV2);e2 = clock();cout << "GPU time:" << double(e2 - s2) << "ms" << endl;cout << "maxV2:" << int(maxV2) << endl;cout << "minV2:" << int(minV2) << endl;cout << "calcMaxMin test end." << endl;}
测试效果


在本文案例中,我通过归一化函数将图像的最值设为20和230,所以验证功能是否正确,只需要判断下函数执行完输出的最值是不是20和230即可。速度方面,CUDA也是很快的,我原以为这种简单计算CPU会更有优势。
该功能相对简单,但也很常用。后续我会写一篇关于归一化的CUDA文章,归一化中很重要的一部分就是确认最值。
如果函数有什么可以改进完善的地方,非常欢迎大家指出,一同进步何乐而不为呢~
如果文章帮助到你了,可以点个赞让我知道,我会很快乐~加油!
相关文章:
CUDA-求最大值最小值atomicMaxatomicMin
作者:翟天保Steven 版权声明:著作权归作者所有,商业转载请联系作者获得授权,非商业转载请注明出处 实现原理 atomicMax和 atomicMin是 CUDA 中的原子操作,用于在并行计算中安全地更新共享变量的最大值和最小值。它们确…...
新的Midjourney就是一个增强版的Photoshop,你现在可以轻松的用它换衣服、换发型了
好久没有聊 Midjourney 了,昨晚他们发布了一项引人注目的新功能:AI 图像编辑,一个基于网页的加强版的 Photoshop 呼之欲出,让我大为震撼,也让用户们赞叹不已。 基于现有图像进行参考,进而生成新的图片&…...
Linux系统安装软件的4种方式【源码配置编译安装、yum安装、rpm包安装、二进制软件包安装(.rpm/.tar.gz/.tgz/.bz2)】
一.源码安装 linux安装软件采用源码安装灵活自由,适用于不同的平台,维护也十分方便。 (一)源码安装流程 源码的安装一般由3个步骤组成: 1.配置(configure) Configure是一个可执行脚本…...
基于Spring Boot的洪涝灾害应急信息管理系统设计与实现
摘要 近年来,全球气候变化加剧,洪涝灾害频发,给各国的经济发展和人民生活带来了巨大的威胁。为了提高洪涝灾害的应急响应能力,开发高效的应急信息管理系统变得至关重要。本文基于Spring Boot框架,设计并实现了一个洪涝…...
912.排序数组(桶排序)
目录 题目解法 题目 给你一个整数数组 nums,请你将该数组升序排列。 你必须在 不使用任何内置函数 的情况下解决问题,时间复杂度为 O(nlog(n)),并且空间复杂度尽可能小。 解法 class Solution { public:vector<int> sortArray(vect…...
IPC 进程间通信 消息队列
操作系统内核中采用一个链式队列管理消息,每个节点就对应一个消息: 操作系统规定了单个消息的数据长度不能超过8k(8192个字节),一个消息队列的表长(节点数)最多不超过256个 利用消息队列进行通信的特点: 1. 全双工:任何参与通信的…...
opencv 图像翻转- python 实现
在做图像数据增强时会经常用到图像翻转操作 flip。 具体代码实现如下: #-*-coding:utf-8-*- # date:2021-03 # Author: DataBall - XIAN # Function: 图像翻转import cv2 # 导入OpenCV库path test.jpgimg cv2.imread(path)# 读取图片 cv2.namedWindow(image,1) …...
使用DolphinScheduler接口实现批量导入工作流并上线
使用DS接口实现批量导入工作量并上线脚本 前面实现了批量生成DS的任务,当导入时发现只能逐个导入,因此通过接口实现会更方便。 DS接口文档 DS是有接口文档的地址是 http://IP:12345/dolphinscheduler/swagger-ui/index.html?languagezh_CN&lang…...
pycharm导出环境安装包列表
pycharm导出环境安装包列表 一、导出安装包列表二、安装requirements.txt三、列表显示已安装的包四、显示特定包的信息 一、导出安装包列表 pip freeze > requirements.txt二、安装requirements.txt pip install -r requirements.txt三、列表显示已安装的包 pip list四、…...
分体式智能网关在现代电力物联网中的优势有哪些?
随着电力系统的不断数字化和智能化,电力物联网已经成为现代电力行业发展的重要方向。电力物联网通过各种智能设备和传感器实现电力系统的监测、数据采集和分析,从而优化电力资源配置,提高电网的安全性和稳定性。在这个背景下,&quo…...
第14篇:下一代网络与新兴技术
目录 引言 14.1 下一代网络(NGN)的定义与特点 14.2 IPv6协议的改进与未来应用 14.3 软件定义网络(SDN) 14.4 网络功能虚拟化(NFV) 14.5 量子通信网络 14.6 软件定义广域网(SD-WAN&#x…...
物联网数据采集网关详细介绍-天拓四方
一、物联网数据采集网关的概述 物联网数据采集网关,简称数据采集网关,是物联网系统中的重要组成部分,位于物联网设备和云端平台之间。其主要职责是实现数据的采集、汇聚、转换、传输等功能,确保来自不同物联网设备的数据能够统一…...
2024软考网络工程师笔记 - 第10章.组网技术
文章目录 交换机基础1️⃣交换机分类2️⃣其他分类方式3️⃣级联和堆叠4️⃣堆叠优劣势5️⃣交换机性能参数 🕑路由器基础1️⃣路由器接口2️⃣交换机路由器管理方式2️⃣交换机路由器管理方式 交换机基础 1️⃣交换机分类 1.根据交换方式分 存储转发式交换(Store…...
C语言——字符串指针和字符串数组
目录 前言 一、定义区别 1、数组表示 2、指针表示 二、内存管理区别 1.字符数组 2.字符指针 三、操作区别 1、访问与修改 2、遍历 3...... 总结 前言 在C语言中,字符串随处可见,字符串是由字符组成的一串数据,字符串以null字符(\0)结尾&#…...
7-1回文判断(栈和队列PTA)
回文是指正读反读均相同的字符序列,如“abba”和“abdba”均是回文,但“good”不是回文。编写一个程序,使用栈判定给定的字符序列是否为回文。 若用C,可借助STL的容器实现。 输入格式: 输入待判断的字符序列,按回车…...
使用 NCC 和 PKG 打包 Node.js 项目为可执行文件(Linux ,macOS,Windows)
🎬 江城开朗的豌豆:个人主页 🔥 个人专栏 :《 VUE 》 《 javaScript 》 📝 个人网站 :《 江城开朗的豌豆🫛 》 ⛺️ 生活的理想,就是为了理想的生活 ! 目录 📘 文章引言 步骤 1:…...
LeetCode:2747. 统计没有收到请求的服务器数目(滑动窗口 Java)
目录 2747. 统计没有收到请求的服务器数目 题目描述: 实现代码与解析: 滑动窗口 原理思路: 2747. 统计没有收到请求的服务器数目 题目描述: 给你一个整数 n ,表示服务器的总数目,再给你一个下标从 0 开…...
项目管理工具--【项目策划任务书】模板
项目策划任务书是项目管理中的重要文件,它详细描述了项目的各个方面,以确保项目能够顺利进行。撰写项目策划任务书时需要考虑以下几个关键要素: 基本信息:包括项目名称、负责人、所在单位、联系方式以及日期等基本信息,…...
雷池社区版那么火,为什么站长都使用雷池社区版??
雷池社区版是长亭科技开发的一款免费开源的 Web 应用防火墙(WAF),具有诸多优势,因此值得使用。 防护效果强大。能够检测并防御各种网络攻击,包括 SQL 注入、跨站脚本(XSS)、跨站请求伪造&#x…...
分布式日志有哪些?
分布式日志系统(Distributed Logging Systems)是在分布式计算环境中用来收集、存储和管理来自多个节点的日志数据的系统。这些系统通常设计用于处理高并发、大规模的日志数据流,并提供强大的查询和分析功能。 一、定义与背景 分布式系统通常…...
网络六边形受到攻击
大家读完觉得有帮助记得关注和点赞!!! 抽象 现代智能交通系统 (ITS) 的一个关键要求是能够以安全、可靠和匿名的方式从互联车辆和移动设备收集地理参考数据。Nexagon 协议建立在 IETF 定位器/ID 分离协议 (…...
零门槛NAS搭建:WinNAS如何让普通电脑秒变私有云?
一、核心优势:专为Windows用户设计的极简NAS WinNAS由深圳耘想存储科技开发,是一款收费低廉但功能全面的Windows NAS工具,主打“无学习成本部署” 。与其他NAS软件相比,其优势在于: 无需硬件改造:将任意W…...
synchronized 学习
学习源: https://www.bilibili.com/video/BV1aJ411V763?spm_id_from333.788.videopod.episodes&vd_source32e1c41a9370911ab06d12fbc36c4ebc 1.应用场景 不超卖,也要考虑性能问题(场景) 2.常见面试问题: sync出…...
FastAPI 教程:从入门到实践
FastAPI 是一个现代、快速(高性能)的 Web 框架,用于构建 API,支持 Python 3.6。它基于标准 Python 类型提示,易于学习且功能强大。以下是一个完整的 FastAPI 入门教程,涵盖从环境搭建到创建并运行一个简单的…...
java调用dll出现unsatisfiedLinkError以及JNA和JNI的区别
UnsatisfiedLinkError 在对接硬件设备中,我们会遇到使用 java 调用 dll文件 的情况,此时大概率出现UnsatisfiedLinkError链接错误,原因可能有如下几种 类名错误包名错误方法名参数错误使用 JNI 协议调用,结果 dll 未实现 JNI 协…...
SQL慢可能是触发了ring buffer
简介 最近在进行 postgresql 性能排查的时候,发现 PG 在某一个时间并行执行的 SQL 变得特别慢。最后通过监控监观察到并行发起得时间 buffers_alloc 就急速上升,且低水位伴随在整个慢 SQL,一直是 buferIO 的等待事件,此时也没有其他会话的争抢。SQL 虽然不是高效 SQL ,但…...
Go 并发编程基础:通道(Channel)的使用
在 Go 中,Channel 是 Goroutine 之间通信的核心机制。它提供了一个线程安全的通信方式,用于在多个 Goroutine 之间传递数据,从而实现高效的并发编程。 本章将介绍 Channel 的基本概念、用法、缓冲、关闭机制以及 select 的使用。 一、Channel…...
MySQL JOIN 表过多的优化思路
当 MySQL 查询涉及大量表 JOIN 时,性能会显著下降。以下是优化思路和简易实现方法: 一、核心优化思路 减少 JOIN 数量 数据冗余:添加必要的冗余字段(如订单表直接存储用户名)合并表:将频繁关联的小表合并成…...
作为测试我们应该关注redis哪些方面
1、功能测试 数据结构操作:验证字符串、列表、哈希、集合和有序的基本操作是否正确 持久化:测试aof和aof持久化机制,确保数据在开启后正确恢复。 事务:检查事务的原子性和回滚机制。 发布订阅:确保消息正确传递。 2、性…...
人工智能--安全大模型训练计划:基于Fine-tuning + LLM Agent
安全大模型训练计划:基于Fine-tuning LLM Agent 1. 构建高质量安全数据集 目标:为安全大模型创建高质量、去偏、符合伦理的训练数据集,涵盖安全相关任务(如有害内容检测、隐私保护、道德推理等)。 1.1 数据收集 描…...
