CMU生成式人工智能大模型:从入门到放弃(九)

引言
在前面的系列博客中,我们深入探讨了生成式对抗网络(GANs)和变分自编码器(VAEs)等生成式模型。今天,我们将探索扩散模型(Diffusion Models)的进一步应用,并讨论在上下文学习(In-context Learning)中的一些关键概念。
扩散模型(Diffusion Models)
扩散模型是一种强大的生成式模型,通过逐步添加和去除噪声来生成数据。这些模型在图像和音频生成方面展现出了卓越的性能。
扩散模型的训练
扩散模型的训练涉及到学习一个逆向过程,该过程能够从噪声中恢复出原始数据。这个过程通常涉及到一个前向过程,将数据逐步转换为噪声,以及一个逆向过程,将噪声逐步转换回数据。
扩散模型的关键特性
- 高斯噪声:扩散模型使用高斯噪声来逐步转换数据,这使得前向过程可以精确逆转。
- 变分下界(Variational Lower Bound):扩散模型使用变分下界作为目标函数,这允许模型在无法直接计算梯度的情况下进行训练。
- 重参数化技巧(Reparameterization Trick):这一技巧允许模型通过随机采样来优化潜在表示,类似于VAEs中的技术。
扩散模型的应用
扩散模型已经被应用于多种任务,包括图像生成、音频生成和文本生成。它们能够生成高质量的数据,这些数据在视觉上或统计上与训练数据相似。
零样本学习(Zero-shot Learning)
零样本学习是一种在没有直接训练数据的情况下进行学习的方法。这种方法通常涉及到利用模型在训练期间学到的知识来对新类别进行预测。
零样本学习的关键概念
- 类别描述:在零样本学习中,类别的描述或属性被用来帮助模型识别在训练期间未见过的类别。
- 迁移学习:零样本学习可以看作是一种迁移学习的形式,其中模型将学到的知识从一个领域迁移到另一个领域。
零样本学习的应用
零样本学习在多类别设置中特别有用,其中某些类别的训练样本很少或根本没有。这种方法在自然语言处理(NLP)和计算机视觉(CV)中都有应用。
上下文学习(In-context Learning)
上下文学习是一种利用模型在训练期间学到的知识来对新输入进行预测的方法。这种方法不涉及对模型权重的直接更新,而是通过在模型的输入中提供额外的上下文信息来实现的。
上下文学习的关键概念
- 提示(Prompting):在上下文学习中,提示是提供给模型的额外输入,旨在引导模型生成特定的输出。
- 链式思考(Chain-of-Thought Prompting):这种方法涉及到提供一系列推理步骤作为提示,以帮助模型生成正确的答案。
上下文学习的应用
上下文学习在自然语言处理任务中特别有用,如文本分类、情感分析和机器翻译。这种方法允许模型在没有直接训练数据的情况下进行有效的预测。
结语
在本篇博客中,我们探讨了扩散模型的进一步应用,并讨论了零样本学习和上下文学习的关键概念。这些方法展示了生成式模型在没有直接训练数据的情况下进行学习的强大能力。在下一篇博客中,我们将继续探讨这些主题的更多细节,并讨论它们在实际应用中的使用。
课件下载地址
https://download.csdn.net/download/u013818406/89922762
相关文章:
CMU生成式人工智能大模型:从入门到放弃(九)
引言 在前面的系列博客中,我们深入探讨了生成式对抗网络(GANs)和变分自编码器(VAEs)等生成式模型。今天,我们将探索扩散模型(Diffusion Models)的进一步应用,并讨论在上…...
HTML基础总结
一、简介 HTML(HyperText Markup Language)即超文本标记语言,是用于创建网页的标准标记语言。它通过使用各种标签来定义网页的结构和内容,告诉浏览器如何显示网页。HTML 文档由标签和文本组成,标签用于描述文本的性质…...
EXCELL中如何两条线画入一张图中,标记坐标轴标题?
1,打开excel,左击选中两列, 2,菜单栏>“插入”>”二维折线图”选中一个 3,选中出现的两条线中的一条右击>最下一行,“设置数据系列格式” 4,右测“系列选项中”>点击“次坐标轴” 5…...
Zabbix企业级分布式监控环境部署
“运筹帷幄之中,决胜千里之外”。在IT运维中,监控占据着重要的地位,按比例来算,说占30%一点也不为过。对IT运维工程师来说,构建一个真正可用的监控告警系统是一项艰巨的任务。在监控系统的开源软件中,可供选…...
水轮发电机油压自动化控制系统解决方案介绍
在现代水电工程中,水轮机组油压自动化控制系统,不仅直接关系到水轮发电机组的安全稳定运行,还影响着整个水电站的生产效率和经济效益。 一、系统概述 国科JSF油压自动控制系统,适用于水轮发电机组调速器油压及主阀(蝶…...
今天不分享技术,分享秋天的故事
引言 这个爱情故事好像是个悲剧,你说的是婚姻。爱情没有悲剧,对爱者而言,爱情怎么会是悲剧呢。对春天而言,秋天是它的悲剧吗。结尾是什么,等待,之后呢,没有之后。或者说,等待的结果…...
转录组上游分析流程(三)
环境部署——数据下载——查看数据(非质控)——数据质控——数据过滤(过滤低质量数据) 测序得到的原始序列含有接头序列和低质量序列,为了保证信息分析的准确性,需要对原始数据进行质量控制,得到高质量序列(Clean Reads),原始序列…...
excel判断某一列(A列)中的数据是否在另一列(B列)中
如B列如果有7个元素,在A列右边的空白列中,输入如下公式: COUNTIF($B$1:$B$7,A1), 其中,$B$1:$B$7代表A列中的所有数据即绝对范围,A1代表B列中的一个单元格....
[环境配置]macOS上怎么查看vscode的commit id
macOS的commit id和windows上有点不一样,windows可以在帮助-关于查看 macOS则需要再左边第一个查看...
.net framework 3.5sp1组件安装进度条不动启动错误怎么解决
安装.NET Framework 3.5 SP1通常需要管理员权限。这是因为安装过程可能需要修改系统文件和注册表项,这些操作通常需要管理员权限才能执行。在Windows系统上,安装.NET Framework 3.5 SP1通常通过控制面板中的“启用或关闭Windows功能”选项进行࿰…...
学习threejs,利用THREE.ExtrudeGeometry拉伸几何体实现svg的拉伸
👨⚕️ 主页: gis分享者 👨⚕️ 感谢各位大佬 点赞👍 收藏⭐ 留言📝 加关注✅! 👨⚕️ 收录于专栏:threejs gis工程师 文章目录 一、🍀前言1.1 ☘️THREE.ExtrudeGeometry拉伸…...
大模型之三十二-语音合成TTS(coqui) 之二 fine-tune
在 大模型之三十-语音合成TTS(coqui)[shichaog CSDN]中提到了xttsv2的fine-tune。 数据情况: 我是从bilibili up主小Lin说提取了一些视频,然后进行了重新的fine-tune。 训练结果 如下图所示,上面波形幅度较大的是xttsv2原始模型的结果&am…...
JVM的内存模型是什么,每个区域的作用是什么,以及面试题(含答案)
JVM(Java 虚拟机)内存模型定义了 Java 程序在运行时如何分配、管理和优化内存。JVM 内存模型主要分为几个关键区域,每个区域有特定的作用: JVM 内存模型 堆内存(Heap): 作用:用于存…...
《设计模式三》Java代理模式实现
Java代理模式实现 静态代理实现 // Subject.java // 主题接口,定义了请求方法 public interface Subject {void request(); }// RealSubject.java // 真实主题实现类,实现了Subject接口 public class RealSubject implements Subject {Overridepublic …...
vue3中计算属性的用法以及使用场景
在 Vue 3 中,计算属性(computed properties)是一种基于依赖项动态计算并缓存的响应式数据。它与 Vue 2 中的计算属性类似,但在组合式 API 中使用 computed 函数来定义。计算属性的核心优势在于能够自动缓存计算结果,仅…...
pytorh学习笔记——cifar10(六)MobileNet V1网络结构
基础知识储备: 一、深度可分离卷积(Depthwise Separable Convolution) MobileNet的核心是深度可分离卷积(Depthwise Separable Convolution),深度可分离卷积是卷积神经网络(CNN…...
报表系统-连接数据库操作
本专栏用于解析自己开源的项目代码,作为复盘和学习使用。欢迎大家一起交流 本样例说明源码开源在: ruoyi-reoprt gitee仓库 ruoyi-report github仓库 欢迎大家到到项目中多给点star支持,对项目有建议或者有想要了解的欢迎一起讨论 连接数据库…...
[计算机网络] 常见端口号
前言 常见的端口号是指互联网协议(如TCP/IP)中预留给特定服务使用的数字范围。它们主要用于标识网络应用程序和服务,并帮助数据包在网络中找到正确的接收方。 按协议类型划分 TCP协议端口: 21:FTP文件传输协议2…...
Linux系统块存储子系统分析记录
1 Linux存储栈 通过网址Linux Storage Stack Diagram - Thomas-Krenn-Wiki-en,可以获取多个linux内核版本下的存储栈概略图,下面是kernel-4.0的存储栈概略图: 2 存储接口、传输速度 和 协议 2.1 硬盘 《深入浅出SSD:固态存储核心…...
大数据——本地威胁检测的全球方法
大数据似乎是众多专业人士关注的话题,从在自然灾害发生时帮助挽救生命,到帮助营销团队设计更有针对性的策略以接触新客户。 对于安全工程师来说,大数据分析被证明是抵御不断演变的网络入侵的有效防御手段,这得益于基于大量不同网…...
论文解读:交大港大上海AI Lab开源论文 | 宇树机器人多姿态起立控制强化学习框架(二)
HoST框架核心实现方法详解 - 论文深度解读(第二部分) 《Learning Humanoid Standing-up Control across Diverse Postures》 系列文章: 论文深度解读 + 算法与代码分析(二) 作者机构: 上海AI Lab, 上海交通大学, 香港大学, 浙江大学, 香港中文大学 论文主题: 人形机器人…...
CTF show Web 红包题第六弹
提示 1.不是SQL注入 2.需要找关键源码 思路 进入页面发现是一个登录框,很难让人不联想到SQL注入,但提示都说了不是SQL注入,所以就不往这方面想了 先查看一下网页源码,发现一段JavaScript代码,有一个关键类ctfs…...
黑马Mybatis
Mybatis 表现层:页面展示 业务层:逻辑处理 持久层:持久数据化保存 在这里插入图片描述 Mybatis快速入门 
一丶 MongoDB简介 对于社交类软件的功能,我们需要对它的功能特点进行分析: 数据量会随着用户数增大而增大读多写少价值较低非好友看不到其动态信息地理位置的查询… 针对以上特点进行分析各大存储工具: mysql:关系型数据库&am…...
在rocky linux 9.5上在线安装 docker
前面是指南,后面是日志 sudo dnf config-manager --add-repo https://download.docker.com/linux/centos/docker-ce.repo sudo dnf install docker-ce docker-ce-cli containerd.io -y docker version sudo systemctl start docker sudo systemctl status docker …...
鸿蒙中用HarmonyOS SDK应用服务 HarmonyOS5开发一个医院查看报告小程序
一、开发环境准备 工具安装: 下载安装DevEco Studio 4.0(支持HarmonyOS 5)配置HarmonyOS SDK 5.0确保Node.js版本≥14 项目初始化: ohpm init harmony/hospital-report-app 二、核心功能模块实现 1. 报告列表…...
数据链路层的主要功能是什么
数据链路层(OSI模型第2层)的核心功能是在相邻网络节点(如交换机、主机)间提供可靠的数据帧传输服务,主要职责包括: 🔑 核心功能详解: 帧封装与解封装 封装: 将网络层下发…...
JVM暂停(Stop-The-World,STW)的原因分类及对应排查方案
JVM暂停(Stop-The-World,STW)的完整原因分类及对应排查方案,结合JVM运行机制和常见故障场景整理而成: 一、GC相关暂停 1. 安全点(Safepoint)阻塞 现象:JVM暂停但无GC日志,日志显示No GCs detected。原因:JVM等待所有线程进入安全点(如…...
Java多线程实现之Thread类深度解析
Java多线程实现之Thread类深度解析 一、多线程基础概念1.1 什么是线程1.2 多线程的优势1.3 Java多线程模型 二、Thread类的基本结构与构造函数2.1 Thread类的继承关系2.2 构造函数 三、创建和启动线程3.1 继承Thread类创建线程3.2 实现Runnable接口创建线程 四、Thread类的核心…...
基于matlab策略迭代和值迭代法的动态规划
经典的基于策略迭代和值迭代法的动态规划matlab代码,实现机器人的最优运输 Dynamic-Programming-master/Environment.pdf , 104724 Dynamic-Programming-master/README.md , 506 Dynamic-Programming-master/generalizedPolicyIteration.m , 1970 Dynamic-Programm…...
