二百七十、Kettle——ClickHouse中增量导入清洗数据错误表
一、目的
比如原始数据100条,清洗后,90条正确数据在DWD层清洗表,10条错误数据在DWD层清洗数据错误表,所以清洗数据错误表任务一定要放在清洗表任务之后。
更关键的是,Hive中原本的SQL语句,放在ClickHouse需要大改,头大!而且Kettle任务要想定时增量导入,既与清洗数据错误表最新时间相关,又与DWD层清洗表最新时间相关,搞了大半天才搞定!
二、Hive中原有代码
2.1 表结构
--21、静态排队错误数据表——动态分区 dwd_queue_error create table if not exists hurys_db.dwd_queue_error(id string comment '唯一ID',device_no string comment '设备编号',source_device_type string comment '设备类型',sn string comment '设备序列号 ',model string comment '设备型号',create_time string comment '创建时间',lane_no int comment '车道编号',lane_type int comment '车道类型 0:渠化1:来向2:出口3:去向4:左弯待转区5:直行待行区6:右转专用道99:未定义车道',queue_count int comment '排队车辆数',queue_len float comment '排队长度(m)',queue_head float comment '排队头车距停止线距离(m)',queue_tail float comment '排队尾车距停止线距离(m)' ) comment '静态排队错误数据表——动态分区' partitioned by (day string) stored as orc ;
2.2 SQL代码
--动态插入数据 insert overwrite table hurys_db.dwd_queue_error partition(day) select UUID() as id, t2.device_no, t2.source_device_type, t2.sn, t2.model, t2.create_time,t2.lane_no, t2.lane_type, t2.queue_count, t2.queue_len, t2.queue_head, t2.queue_tail, t2.day from hurys_db.ods_queue as t2 left join hurys_db.dwd_queue as t3 on t3.device_no=t2.device_no and t3.create_time=t2.create_time and t3.lane_no=t2.lane_no where t3.device_no is null and t3.create_time is null and t3.lane_no is null and t2.day='2024-09-10' ;
原有Hive代码很简单,然后把代码变成脚本,放在海豚定时调度即可,都很简单!
三、ClickHouse中现有代码
3.1 表结构
--21 静态排队数据错误表(长期存储)
create table if not exists hurys_jw.dwd_queue_error(id String comment '唯一ID',device_no String comment '设备编号',source_device_type Nullable(String) comment '设备类型',sn Nullable(String) comment '设备序列号 ',model Nullable(String) comment '设备型号',create_time DateTime comment '创建时间',lane_no Int32 comment '车道编号',lane_type Nullable(Int32) comment '车道类型 0:渠化1:来向2:出口3:去向4:左弯待转区5:直行待行区6:右转专用道99:未定义车道',queue_count Int32 comment '排队车辆数',queue_len Decimal(10, 2) comment '排队长度(m)',queue_head Decimal(10, 2) comment '排队头车距停止线距离(m)',queue_tail Decimal(10, 2) comment '排队尾车距停止线距离(m)',day Date comment '日期'
)
ENGINE = MergeTree
PARTITION BY day
PRIMARY KEY (day,id)
ORDER BY (day,id)
SETTINGS index_granularity = 8192;
注意:由于后面数据清洗记录表需要,因此部分清洗规则的字段不能用Nullable,这也是后面的一大坑!
3.2 SQL代码
select generateUUIDv4() as id, device_no, source_device_type, sn, model, create_time, lane_no, lane_type, queue_count, queue_len, queue_head, queue_tail, cast(day as String) day from (selectt2.device_no, t2.source_device_type, t2.sn, t2.model,t2.create_time,t2.lane_no, t2.lane_type,t2.queue_count, t2.queue_len, t2.queue_head, t2.queue_tail, toDate(t2.create_time) dayfrom hurys_jw.ods_queue as t2ANTI join hurys_jw.dwd_queue as t3on t3.device_no=t2.device_no and t3.create_time=t2.create_time and t3.lane_no=t2.lane_no) --where create_time > ? ;
注意:1 生成uuid字段,Hive中是UUID() as id,而ClickHouse中是generateUUIDv4() as id
2 ClickHouse中with语句好像不是支持,不知道是不是版本问题
3 ClickHouse中有ANTI join函数
4 Kettle里需要把Date字段的day变成cast(day as String) day
3.3 Kettle任务
3.3.1 newtime
获取目标表dwd_queue_error的最新时间create_time
3.3.2 替换NULL值
3.3.3 clickhouse输入

select
generateUUIDv4() as id,
device_no, source_device_type, sn, model, create_time,
lane_no,
lane_type, queue_count, queue_len, queue_head, queue_tail,
cast(day as String) day
from (
select t2.device_no, t2.source_device_type, t2.sn, t2.model,t2.create_time,t2.lane_no, t2.lane_type,
t2.queue_count, t2.queue_len, t2.queue_head, t2.queue_tail, toDate(t2.create_time) day
from hurys_jw.ods_queue as t2
ANTI join hurys_jw.dwd_queue as t3
on t3.device_no=t2.device_no and t3.create_time=t2.create_time and t3.lane_no=t2.lane_no
)
where create_time > ?
;
3.3.4 字段选择
3.3.5 newtime3
获取清洗表dwd_queue的最新时间create_time3
3.3.6 替换NULL值3
3.3.7 记录关联 (笛卡尔输出)
注意:清洗表dwd_queue的最新时间create_time3要大于等于目标表dwd_queue_error的最新时间create_time
3.3.8 clickhouse输出
3.3.9 保存后先执行清洗表dwd_queue任务,再执行dwd_queue_error任务
3.3.10 配置海豚调度任务
搞定!!!
相关文章:

二百七十、Kettle——ClickHouse中增量导入清洗数据错误表
一、目的 比如原始数据100条,清洗后,90条正确数据在DWD层清洗表,10条错误数据在DWD层清洗数据错误表,所以清洗数据错误表任务一定要放在清洗表任务之后。 更关键的是,Hive中原本的SQL语句,放在ClickHouse…...
CentOS6升级OpenSSH9.2和OpenSSL3
文章目录 1.说明2.下载地址3.升级OpenSSL4.安装telnet 服务4.1.安装 telnet 服务4.2 关闭防火墙4.2.使用 telnet 连接 5.升级OpenSSH5.1.安装相关命令依赖5.2.备份原 ssh 配置5.3.卸载原有的 OpenSSH5.4.安装 OpenSSH5.5.修改 ssh 配置文件5.6关闭 selinux5.7.重启 OpenSSH 1.说…...

2024 年 MathorCup 数学应用挑战赛——大数据竞赛-赛道 A:台风的分类与预测
2024年MathorCup大数据挑战赛-赛道A初赛--思路https://download.csdn.net/download/qq_52590045/89922904↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓…...

kotlin实现viewpager
说明:kotlin tablayout viewpager adapter实现滑动界面 效果图 step1: package com.example.flushfragmentdemoimport androidx.appcompat.app.AppCompatActivity import android.os.Bundle import androidx.fragment.app.Fragment import androidx.viewpager2.adapter.…...

RabbitMQ最新版本4.0.2在Windows下的安装及使用
RabbitMQ 是一个开源的消息代理和队列服务器,提供可靠的消息传递和队列服务。它支持多种消息协议,包括 AMQP、STOMP、MQTT 等。本文将详细介绍如何在 Windows 系统上安装和使用最新版本的 RabbitMQ 4.0.2。 前言 RabbitMQ 是用 Erlang 语言开发的 AMQP&…...
东方博宜1180 - 数字出现次数
问题描述 有 50 个数( 0∼19),求这 50个数中相同数字出现的最多次数为几次? 输入 50 个数字。 输出 1 个数字(即相同数字出现的最多次数)。 样例 输入 1 10 2 0 15 8 12 7 0 3 15 0 15 18 16 7 17 16 9 …...

LeetCode: 3274. 检查棋盘方格颜色是否相同
一、题目 给你两个字符串 coordinate1 和 coordinate2,代表 8 x 8 国际象棋棋盘上的两个方格的坐标。 以下是棋盘的参考图。 如果这两个方格颜色相同,返回 true,否则返回 false。 坐标总是表示有效的棋盘方格。坐标的格式总是先…...

datax编译并测试
mvn -U clean package assembly:assembly -Dmaven.test.skiptrue 参看:DataX导数的坑_datax插件初始化错误, 该问题通常是由于datax安装错误引起,请联系您的运维解决-CSDN博客 两边表结构先创建好: (base) [rootlnpg bin]# pwd /db/DataX-datax_v20230…...

2-133 基于matlab的粒子群算法PSO优化BP神经网络
基于matlab的粒子群算法PSO优化BP神经网络,BP神经网络算法采用梯度下降算法,以输出误差平方最小为目标,采用误差反向传播,训练网络节点权值和偏置值,得到训练模型。BP神经网络的结构(层数、每层节点个数)较复杂时&…...
复盘秋招22场面试(四)形势重新评估与后续措施
连续好多天睡不着觉,经常晚上起来好几次,到现在还是没offer。之前有个校友在抖音留言说我能收到这么多面试说明简历没问题,这么多一面挂,说明我技术面有问题。确实有一些是kpi面,但是我复盘之后我发现也没有那么多kpi面…...

揭开C++ STL的神秘面纱之string:提升编程效率的秘密武器
目录 🚀0.前言 🚈1.string 构造函数 🚝1.1string构造函数 🚝1.2string拷贝构造函数 🚈2.string类的使用 🚝2.1.查询元素个数或空间 返回字符串中有效字符的个数:size lenth 返回字符串目…...

用人工智能,应该怎么掏钱?
人工智能(AI)服务的发展正快速改变企业和开发者的工作方式,不仅提供了强大的数据分析和预测能力,还涵盖了从自然语言处理到图像识别的广泛功能。然而,理解AI服务的支付模式对成本控制和合理资源分配至关重要࿰…...

【Axure高保真原型】移动案例
今天和大家分享多个常用的移动案例的原型模板,包括轮盘滑动控制元件移动、页面按钮控制元件移动、鼠标单击控制元件移动、元件跟随鼠标移动、鼠标拖动控制元件移动、键盘方向键控制元件移动,具体效果可以点击下方视频观看或打开下方预览地址查看哦 【原…...

Bytebase 3.0.0 - AI 助手全面升级
🚀 新功能 SQL 编辑器里的 AI 助手:支持将自然语言转换成 SQL 语句,解释 SQL 代码,还能帮助发现潜在问题。 支持 SQL Server DML 语句一键回滚。支持 MariaDB 的在线大表变更。新的 SQL 审核规则: 要求为 MySQL 设置 …...
php基础:数据类型、常量、字符串
语法补充: 每句必须以;结尾 echo:能输出一个以上的字符串,英文逗号隔开 print:只能输出一个字符串并返回1 1.数据类型 php可以自动识别数据类型。 php有5种数据类型:String(字符串…...

Discuz发布原创AI帖子内容生成:起尔 | AI原创帖子内容生成插件开发定制
Discuz发布原创AI帖子内容生成:起尔 | AI原创帖子内容生成插件开发定制 在当今互联网快速发展的时代,内容创作成为了网站运营、社交媒体管理和个人博客维护不可或缺的一部分。然而,高质量内容的创作往往耗时耗力,特别是对于需要频…...
el-table在某些条件下禁止选中
el-table在某些条件下禁止选中 废话不多说直接上代码 HTML部分 <el-table v-loading"loading" :data"wmsShipmentOrderList" ref"multipleTable" select"handleSelect" selection-change"handleSelectionChange">&…...
深入探讨 HTTP 请求方法:GET、POST、PUT、DELETE 的实用指南
文章目录 引言GET 方法POST 方法PUT 方法DELETE 方法小结适用场景与特点总结最佳实践 在 API 设计中的重要性 引言 HTTP 协议的背景:介绍 HTTP(超文本传输协议)作为互联网的基础协议,自 1991 年发布以来,成为客户端和…...
深度学习:元学习(Meta-Learning)详解
元学习(Meta-Learning)详解 元学习,也称为“学会学习”,是机器学习中的一个重要子领域,旨在开发能够快速适应新任务或环境的模型,即使这些任务的可用数据非常有限。元学习的核心思想是通过经验学习如何学习…...
uniapp展示本地pdf + 自定义标题
概要 本文主要讲述uniapp打包的Android项目如何展示本地的PDF文件,并设置标题 需求分析 1、因为是打包的Android项目展示本地的PDF文件,首先需要拿到这个本地的PDF文件路径 2、如何在uniapp的vue页面中展示PDF,因为没有直接展示PDF文件的…...

业务系统对接大模型的基础方案:架构设计与关键步骤
业务系统对接大模型:架构设计与关键步骤 在当今数字化转型的浪潮中,大语言模型(LLM)已成为企业提升业务效率和创新能力的关键技术之一。将大模型集成到业务系统中,不仅可以优化用户体验,还能为业务决策提供…...
进程地址空间(比特课总结)
一、进程地址空间 1. 环境变量 1 )⽤户级环境变量与系统级环境变量 全局属性:环境变量具有全局属性,会被⼦进程继承。例如当bash启动⼦进程时,环 境变量会⾃动传递给⼦进程。 本地变量限制:本地变量只在当前进程(ba…...

微软PowerBI考试 PL300-选择 Power BI 模型框架【附练习数据】
微软PowerBI考试 PL300-选择 Power BI 模型框架 20 多年来,Microsoft 持续对企业商业智能 (BI) 进行大量投资。 Azure Analysis Services (AAS) 和 SQL Server Analysis Services (SSAS) 基于无数企业使用的成熟的 BI 数据建模技术。 同样的技术也是 Power BI 数据…...

Redis相关知识总结(缓存雪崩,缓存穿透,缓存击穿,Redis实现分布式锁,如何保持数据库和缓存一致)
文章目录 1.什么是Redis?2.为什么要使用redis作为mysql的缓存?3.什么是缓存雪崩、缓存穿透、缓存击穿?3.1缓存雪崩3.1.1 大量缓存同时过期3.1.2 Redis宕机 3.2 缓存击穿3.3 缓存穿透3.4 总结 4. 数据库和缓存如何保持一致性5. Redis实现分布式…...
【磁盘】每天掌握一个Linux命令 - iostat
目录 【磁盘】每天掌握一个Linux命令 - iostat工具概述安装方式核心功能基础用法进阶操作实战案例面试题场景生产场景 注意事项 【磁盘】每天掌握一个Linux命令 - iostat 工具概述 iostat(I/O Statistics)是Linux系统下用于监视系统输入输出设备和CPU使…...
重启Eureka集群中的节点,对已经注册的服务有什么影响
先看答案,如果正确地操作,重启Eureka集群中的节点,对已经注册的服务影响非常小,甚至可以做到无感知。 但如果操作不当,可能会引发短暂的服务发现问题。 下面我们从Eureka的核心工作原理来详细分析这个问题。 Eureka的…...

华硕a豆14 Air香氛版,美学与科技的馨香融合
在快节奏的现代生活中,我们渴望一个能激发创想、愉悦感官的工作与生活伙伴,它不仅是冰冷的科技工具,更能触动我们内心深处的细腻情感。正是在这样的期许下,华硕a豆14 Air香氛版翩然而至,它以一种前所未有的方式&#x…...
CSS设置元素的宽度根据其内容自动调整
width: fit-content 是 CSS 中的一个属性值,用于设置元素的宽度根据其内容自动调整,确保宽度刚好容纳内容而不会超出。 效果对比 默认情况(width: auto): 块级元素(如 <div>)会占满父容器…...
MySQL 8.0 事务全面讲解
以下是一个结合两次回答的 MySQL 8.0 事务全面讲解,涵盖了事务的核心概念、操作示例、失败回滚、隔离级别、事务性 DDL 和 XA 事务等内容,并修正了查看隔离级别的命令。 MySQL 8.0 事务全面讲解 一、事务的核心概念(ACID) 事务是…...
绕过 Xcode?使用 Appuploader和主流工具实现 iOS 上架自动化
iOS 应用的发布流程一直是开发链路中最“苹果味”的环节:强依赖 Xcode、必须使用 macOS、各种证书和描述文件配置……对很多跨平台开发者来说,这一套流程并不友好。 特别是当你的项目主要在 Windows 或 Linux 下开发(例如 Flutter、React Na…...