【大模型理论篇】主流大模型的分词器选择及讨论(BPE/BBPE/WordPiece/Unigram)
1. 背景分析
分词是将输入和输出文本拆分成更小单位的过程,使得大模型能够处理。token可以是单词、字符、子词或符号,取决于模型的类型和大小。分词可以帮助模型处理不同的语言、词汇和格式,并降低计算和内存成本。分词还可以通过影响token的含义和上下文,影响生成文本的质量和多样性。
我们在前述文章《BPE原理及代码示例》、《WordPiece原理及代码示例》、《Unigram原理及代码示例》三篇文章讨论了在预训练模型中最常用的三种tokenizer算法:BPE、WordPiece、Unigram。
对这几类技术再做下简述,详细的可以点击链接看我们的文章:
BPE(字节对编码)
BPE的核心概念是从字母开始,反复合并频率最高且相邻的两个token,直到达到目标词数。
BBPE
BBPE的基本思想是将BPE从字符级别扩展到字节(Byte)级别。BPE在处理unicode编码时可能会导致基础字符集过大,而BBPE将每个字节视为一个“字符”,不论实际字符集用多少字节表示。这样,基础字符集的大小就固定为256(2^8),从而实现跨语言共享词表,并显著缩减词表大小。然而,对于像中文这样的语言,文本序列长度会显著增加,这可能使得BBPE模型的性能优于BPE模型,但其序列长度较长也会导致训练和推理时间增加。BBPE的实现与BPE类似,主要差别在于基础词表使用256的字节集。
WordPiece
WordPiece算法可视为BPE的变种。不同之处在于,WordPiece通过概率生成新的subword,而不是简单地选择频率最高的字节对。WordPiece每次从词表中选出两个子词合并成一个新子词,但选择的是能最大化语言模型概率的相邻子词。
Unigram
Unigram与BPE和WordPiece在本质上有明显区别。前两者从小词表开始,逐步增加到设定的词汇量,而Unigram则先初始化一个大词表,通过语言模型评估逐步减少词表,直到达到目标词汇量。
2. 分词粒度的讨论
技术有这么多,那该如何选择?首先我们来看下不同粒度的token有哪些影响?
2.1 针对小的token的分析
优势:
1.较小的token使得模型能够生成和理解更广泛的单词,包括通过组合较小的部分来处理从未见过的单词。
2.由于token较小,词汇大小通常较小,从而在某些方面节省内存和计算资源。
3.较小的token一般也更适合处理多种语言或代码,尤其是当这些语言具有不同的句法或语法结构时。
4.较小的token可能更好地处理拼写错误。
缺点:
1.较小的token意味着给定文本会被拆分成更多的词元,从而增加处理文本的计算成本。
2.另外由于固定的最大token限制,使用较小的token可能导致模型能够考虑的实际内容的“上下文”减少。
3.较小的token可能导致表达存在一定的模糊度,使模型在没有足够上下文的情况下更难理解token序列的含义。
2.2 针对大的token的分析
优点:
1.较大的token减少表示文本所需的token数量,从而在计算上提高了处理效率。
2.在固定的最大token数限制下,较大的token允许模型考虑更长的文本,从而可能提高理解和生成能力。
3.较大的token可能直接捕捉到更多细致的含义,减少因将单词拆分成更小部分而产生的模糊性。
缺点:
1.较大的token通常需要更大的词汇来捕捉相同范围的文本,这可能会带来占用大量内存的现象。
2.较大的token可能限制模型对未见或稀有单词的泛化能力,因为整个token必须与模型的词汇中的某个内容匹配。
3.较大的token可能在处理复杂形态或句法的语言时效果不佳,或在需要理解多种语言的任务中。
4.较大的token对拼写错误、拼写变体及其他文本中的小变化敏感。
3. 主流大模型的分词器选择
模型 | 分词器 |
GPT-4o | BPE(BBPE)【2】 |
GPT3 | BPE(BBPE)【3】 |
GPT2 | BPE(BBPE)【4】 |
GPT | BPE【5】 |
Llama3 | BPE(BBPE)【6,8】 |
Llama2 | BPE(BBPE)【7,8】 |
Qwen2 | BPE(BBPE)【9,10】 |
Qwen | BPE(BBPE)【11】 |
ChatGLM | BBPE【12】 |
Baichuan | BPE【13】 |
RoBERTa | BPE【5】 |
BART | BPE【5】 |
DeBERTa | BPE【5】 |
MPNET | WordPiece【14】 |
Funnel Transformers | WordPiece【14】 |
MobileBERT | WordPiece【14】 |
DistilBERT | WordPiece【14】 |
BERT | WordPiece【14】 |
T5 | Unigram【15】 |
AlBERT | Unigram【15】 |
mBART | Unigram【15】 |
XLNet | Unigram【15】 |
当然虽然说GPT系列或者其他大模型用的都是BPE(BBPE),但在处理上还会有一些细微的差异。可以试用下openai提供的在线tokenizer工具:https://platform.openai.com/tokenizer
此外, OpenAI、Google、huggingface分别都提供了开源的tokenizer工具:tiktoken、sentencepiece、tokenizers,支持主流的分词算法。
扩展阅读:
《全方位解读大模型:多样知识点的深度探讨与技术分享小结》
4. 参考材料
【1】Understanding “tokens” and tokenization in large language models
【2】openai/tiktoken
【3】gpt-tokenizer
【4】Language Models are Unsupervised Multitask Learners
【5】Byte-Pair Encoding tokenization
【6】Llama3
【7】Llama2
【8】Llama (LLM)
【9】qwen2-concepts
【10】tokenization_qwen2
【11】qwen/tokenization_note
【12】tokenization_chatglm
【13】Baichuan-7B
【14】WordPiece tokenization
【15】Unigram tokenization
相关文章:

【大模型理论篇】主流大模型的分词器选择及讨论(BPE/BBPE/WordPiece/Unigram)
1. 背景分析 分词是将输入和输出文本拆分成更小单位的过程,使得大模型能够处理。token可以是单词、字符、子词或符号,取决于模型的类型和大小。分词可以帮助模型处理不同的语言、词汇和格式,并降低计算和内存成本。分词还可以通过影响token的…...

入侵检测算法平台部署LiteAIServer视频智能分析平台行人入侵检测算法
在当今科技日新月异的时代,行人入侵检测技术作为安全防护的重要组成部分,正经历着前所未有的发展。入侵检测算法平台部署LiteAIServer作为这一领域的佼佼者,凭借其卓越的技术实力与广泛的应用价值,正逐步成为守护公共安全的新利器…...

000010 - Mapreduce框架原理
Mapreduce框架原理 1. InputFormat 数据输入1.1 切片与 MapTask 并行度决定机制1.2 Job 提交流程源码和切片源码详解1.2.1 Job 提交流程源码详解1.2.2 FileInputFormat 切片源码解析(input.getSplits(job)) 1.3 FileInputFormat 切片机制1.3.1 切片机制1…...
OpenCV未定义标识符CV_XXX
报错“未定义标识符CV_XXX”,即编译器找不到常量CV_XXX,如果代码是基于旧版本的OpenCV编写的,而环境中安装的是一个更新的版本,可能会导致一些标识符被重命名或移除,导致不匹配情况。 经常遇到的包括:CV_R…...
flask服务通过gunicorn启动
使用 Gunicorn 启动 Flask 服务通常可以提升 Flask 应用的性能。以下是通过 Gunicorn 启动 Flask 服务的步骤: 1. 安装依赖 首先,确保已安装 Flask 和 Gunicorn: pip install flask gunicorn2. 创建 Flask 应用 创建一个简单的 Flask 应用…...

用更多的钱买电脑而不是手机
如果,我们对自己的定义是知识工作者,那么在工作、学习相关的电子设备投入上,真的别舍不得花钱。 需要留意的是,手机,对于大部分在电脑前工作的人,不是工作设备。在我看来,每年投入到电脑的钱&…...
10.25学习
1.程序链接库 程序链接库(Library),通常简称为库,是程序设计中一种常用的代码组织方式。它包含了一组预先编写好的代码,这些代码可以被多个不同的程序调用,以实现特定的功能。使用链接库的主要目的包括&am…...
用xshell给服务器上传jar包
首先,用xshell登录并进入到你的jar包目录下 然后使用 sudo rz -be命令,就可以选择本地文件了,选择jar包上传 一般如果提示传输失败,大概率是你的文件夹下有这个jar包了,名字相同冲突了, 那么你需要用这个…...

从零搭建开源陪诊系统:关键技术栈与架构设计
构建一个开源陪诊系统是一个涉及多种技术的复杂工程。为了让这个系统具备高效、可靠和可扩展的特点,我们需要从架构设计、技术栈选择到代码实现等方面进行全面的考量。本文将从零开始,详细介绍搭建开源陪诊系统的关键技术栈和架构设计,并提供…...
java List<Map<String, Object>> 转 List<JSONObject> 的几种方式
目录 方法一:使用传统循环 方法二:使用 Java 8 的流(Stream)API 方法三:使用 Guava 库 总结 将 List<Map<String, Object>> 转换为 List<JSONObject> 有多种方法。以下是几种常见的方法…...

使用Python来下一场深夜雪
效果图:(真实情况是动态的) 完整代码: import turtle import random# 初始化画布 turtle.bgcolor("#001f3f") # 偏深蓝色的背景 turtle.title("下雪的画面") turtle.speed(0) turtle.hideturtle() turtle.t…...

uniapp使用easyinput文本框显示输入的字数和限制的字数
uniapp使用easyinput文本框显示输入的字数和限制的字数 先上效果图: 整体代码如下: <template><view class"nameInfoContent"><uni-easyinput class"uni-mt-5" suffixIcon"checkmarkempty" v-model&quo…...

蓝牙技术的多种模式详解
蓝牙作为一种广泛应用的无线通信技术,已经在我们的日常生活中无处不在。随着技术的发展,蓝牙已经不再仅限于传统的音频传输,而是扩展到了各种应用领域。本文将深入探讨蓝牙的各种模式及其应用场景。 1. 经典蓝牙(BR/EDRÿ…...

攻防世界-流量分析WP
流量分析1来自 <攻防世界> 题目描述:流量分析,你知道这堆流量做了什么事情吗,你能恢复出来flag吗? 1,首先查看IPv4统计信息 如果该流量记录的是黑客的攻击行为产生的流量,那么出现频率最高的流量应该来自攻击者…...
打印爱心型
#include<stdio.h> int main() { printf("\n\n\n"); //输出梯形 // printf("\033{31m"); int t0,i0,j0; for (i 0; i <3; i)//输出行数 { for (t 1; t<5-i*2;t)//输出空格 printf(" "); …...

WASM 使用说明23事(RUST实现)
文章目录 1. wasm是什么1.1 chatgpt定义如下:1.2 wasm关键特性: 2. wasm demo2.1 cargo 创建项目2.2 编写code2.3 安装wasm-pack2.4 编译 3.1 html页面引用wasm代码(js引用)3.2 访问页面4 导入js function4.1 编写lib.rs文件,内容…...

Visual studio 下载安装
1,Visual stutdio 网址 下载 Visual Studio Tools - 免费安装 Windows、Mac、Linux 2,下划页面,点击 较早的下载 3,选择对应的版本进行下载...
jEasyUI 创建自定义视图
jEasyUI 创建自定义视图 jEasyUI(jQuery EasyUI)是一个基于jQuery的用户界面插件集合,它为用户提供了一系列的UI组件,如菜单、窗口、表格等,使得Web界面的开发变得更加简单快捷。在本文中,我们将探讨如何使…...

SpringMVC6-SpringMVC的视图
目录 ThymeleafView 转发视图 重定向视图 视图控制器view-controller SpringMVC中的视图是View接口,视图的作用:渲染数据,将模型Model中的数据展示给用户 SpringMVC视图的种类很多,默认有转发视图InternalResourceView 和重定…...

echarts给Y轴的不同轴线设置不同的颜色的样式
官方文档 option {xAxis: {type: category,data: [Mon, Tue, Wed, Thu, Fri, Sat, Sun]},yAxis: {type: value},series: [{data: [150, 230, 224, 218, 135, 147, 260],type: line,}] }; 效果: 需要添加参数markLine option {xAxis: {type: category,data: [M…...

使用VSCode开发Django指南
使用VSCode开发Django指南 一、概述 Django 是一个高级 Python 框架,专为快速、安全和可扩展的 Web 开发而设计。Django 包含对 URL 路由、页面模板和数据处理的丰富支持。 本文将创建一个简单的 Django 应用,其中包含三个使用通用基本模板的页面。在此…...

智慧医疗能源事业线深度画像分析(上)
引言 医疗行业作为现代社会的关键基础设施,其能源消耗与环境影响正日益受到关注。随着全球"双碳"目标的推进和可持续发展理念的深入,智慧医疗能源事业线应运而生,致力于通过创新技术与管理方案,重构医疗领域的能源使用模式。这一事业线融合了能源管理、可持续发…...

React第五十七节 Router中RouterProvider使用详解及注意事项
前言 在 React Router v6.4 中,RouterProvider 是一个核心组件,用于提供基于数据路由(data routers)的新型路由方案。 它替代了传统的 <BrowserRouter>,支持更强大的数据加载和操作功能(如 loader 和…...

【网络安全产品大调研系列】2. 体验漏洞扫描
前言 2023 年漏洞扫描服务市场规模预计为 3.06(十亿美元)。漏洞扫描服务市场行业预计将从 2024 年的 3.48(十亿美元)增长到 2032 年的 9.54(十亿美元)。预测期内漏洞扫描服务市场 CAGR(增长率&…...

HTML 列表、表格、表单
1 列表标签 作用:布局内容排列整齐的区域 列表分类:无序列表、有序列表、定义列表。 例如: 1.1 无序列表 标签:ul 嵌套 li,ul是无序列表,li是列表条目。 注意事项: ul 标签里面只能包裹 li…...
JS手写代码篇----使用Promise封装AJAX请求
15、使用Promise封装AJAX请求 promise就有reject和resolve了,就不必写成功和失败的回调函数了 const BASEURL ./手写ajax/test.jsonfunction promiseAjax() {return new Promise((resolve, reject) > {const xhr new XMLHttpRequest();xhr.open("get&quo…...
腾讯云V3签名
想要接入腾讯云的Api,必然先按其文档计算出所要求的签名。 之前也调用过腾讯云的接口,但总是卡在签名这一步,最后放弃选择SDK,这次终于自己代码实现。 可能腾讯云翻新了接口文档,现在阅读起来,清晰了很多&…...

基于PHP的连锁酒店管理系统
有需要请加文章底部Q哦 可远程调试 基于PHP的连锁酒店管理系统 一 介绍 连锁酒店管理系统基于原生PHP开发,数据库mysql,前端bootstrap。系统角色分为用户和管理员。 技术栈 phpmysqlbootstrapphpstudyvscode 二 功能 用户 1 注册/登录/注销 2 个人中…...

永磁同步电机无速度算法--基于卡尔曼滤波器的滑模观测器
一、原理介绍 传统滑模观测器采用如下结构: 传统SMO中LPF会带来相位延迟和幅值衰减,并且需要额外的相位补偿。 采用扩展卡尔曼滤波器代替常用低通滤波器(LPF),可以去除高次谐波,并且不用相位补偿就可以获得一个误差较小的转子位…...

RabbitMQ 各类交换机
为什么要用交换机? 交换机用来路由消息。如果直发队列,这个消息就被处理消失了,那别的队列也需要这个消息怎么办?那就要用到交换机 交换机类型 1,fanout:广播 特点 广播所有消息:将消息…...