vivo 轩辕文件系统:AI 计算平台存储性能优化实践
在早期阶段,vivo AI 计算平台使用 GlusterFS 作为底层存储基座。随着数据规模的扩大和多种业务场景的接入,开始出现性能、维护等问题。为此,vivo 转而采用了自研的轩辕文件系统,该系统是基于 JuiceFS 开源版本开发的一款分布式文件存储方案。
本文将介绍 vivo 轩辕文件系统在 JuiceFS 基础之上开发的新特性。以及 vivo 针对一些关键场景,如样本数据读取速度慢和检查点写入环节的优化措施。此外,文章还将介绍 vivo 的技术规划包括 FUSE、 元数据引擎及 RDMA 通信等方面,希望能为在大规模 AI 场景使用 JuiceFS 的用户提供参考与启发。01 计算平台引入轩辕文件存储的背景
01 计算平台引入轩辕文件存储的背景
最初,vivo 的 AI 计算平台 使用 GlusterFS ,并由该团队自行维护。在使用过程中,团队遇到了一些问题。一是处理小文件时速度变得非常缓慢;二是当需要对 GlusterFS 进行机器扩容和数据平衡时,对业务产生了较大的影响。
随后,由于早期集群容量已满且未进行扩容,计算团队选择搭建了新的集群。然而,这导致了多个集群需要维护,从而增加了管理的复杂度。此外,作为平台方,他们在存储方面的投入人力有限,因此难以进行新特性开发。
他们了解到我们互联网部门正在研发文件存储解决方案,经过深入交流和测试。最终,他们决定将其数据存储迁移至我们的轩辕文件存储系统。

轩辕文件系统基于 JuiceFS 开源版,进行了二次开发,支持多种标准访问协议,包括 POSIX、HDFS 以及 Windows 上的 CIFS 协议。此外,我们还提供了文件恢复功能,该功能参考了商用解决方案,能够按照原路径进行数据恢复。
同时,我们的系统支持客户端热升级,这一功能在开源版本中也已经实现。另外,我们还支持用户名权限管理,默认使用本地 uid/gid 进行鉴权。在此基础上,我们还参考 JuiceFS 企业版实现了用户名鉴权功能。
下图是轩辕文件系统的架构图,与 JuiceFS 类似。在底层基座方面,我们使用 TikV 存储元数据,而数据则存储在我们自研的对象存储系统中。特别值得一提的是,在 Windows 场景下,我们在 Samba 中开发了一个插件,该插件直接调用 JuiceFS API,从而为用户提供了一个在 Windows 上访问我们文件存储的通道。

目前的 AI 计算平台存储流程如下:首先获取原始数据并通过一个包含 4 万个批处理任务的系统进行处理,生成样本库。这些样本库随后在 GPU 上训练,产生模型文件,这些模型文件被传输至在线系统用于推理。原始数据及处理后的样本库直接存储在轩辕文件系统中,由于其兼容 HDFS API,Spark 可以直接处理这些数据。模型文件也保存在轩辕中,并通过其提供的CSI插件,使在线推理系统能直接挂载并读取这些文件。

02 存储性能优化
训练阶段涉及存储的主要有两个重要方面:样本读和训练过程中的检查点( checkpoint) 保存。

环节1:加速样本读
为了提升样本加载的速度,我们开发了一个分布式读缓存层。在训练模型前,我们借助JuiceFS 提供的 warm up 功能,优先将本次训练所需的数据预加载至读缓存层。通过这种方式,训练数据可以直接从读缓存层获取,而无需从对象存储系统中拉取。通常情况下,直接从对象存储中读取数据需要花费十几至几十毫秒,但通过读缓存层则可将读取时间缩短至 10 毫秒以内,从而进显著提高了数据加载到 GPU的 速度。

环节2:检查点 (Checkpoint) 写入
在检查点写入方面,我们参考了百度的方案。具体而言,检查点数据首先被写入一个临时缓存区域(我们称之为“协管”区域,但此处可能指的是某种形式的中间缓存或暂存区),然后再逐步刷新到对象存储中。在这个过程中,我们也采用了单副本模式,因为检查点本身就是每隔一段时间保存的,即使某个时间段的检查点丢失,对整体训练的影响也是有限的。当然,我们也制定了一些策略来确保关键数据的安全性,并非所有数据都会进入这个中间缓存区域。通常,只有检查点文件和训练阶段的日志文件会被写入。如果训练中断,检查点文件可以从这个中间缓存区域中读取。

此外,当数据被写入并刷新到对象存储中时,我们并不会立即从检查点缓存中清除这些数据。因为训练过程中随时可能中断,如果此时检查点缓存中的数据被清除,而需要从对象存储中重新拉取,将会耗费较长时间。因此,我们设置了一个 TTL(生存时间)机制。例如,如果检查点数据每小时刷新一次到对象存储中,我们可以将 TTL 设置为 1.5 小时。这样,即使训练中断,我们也能确保检查点缓存中有一个最新的备份可供使用。
在开发写缓存的过程中,我们遇到了一个挑战。由于我们的客户端与写缓存之间的通信采用 gRPC 协议,该协议在数据反序列化时会重新申请内存以存储解析后的数据。在特定时间段内,如果写操作非常集中(例如在几十秒内),会导致大量的内存申请和释放。由于我们使用的是 Go 语言开发,其垃圾回收(GC)机制在这种情况下表现较慢,可能会导致写缓存的内存耗尽。
为了解决这个问题,我们调研了其他数据反序列化的方案。最终,我们采用了 Facebook 的 flatterbuffer 方案。与 gRPC 的 Pb 反序列化不同,flatterbuffer 在反序列化后可以直接使用数据,无需额外的解析步骤。通过这种方式,我们减少了内存的使用,与 Pb 相比,内存节省达到了 50%。同时,我们也对写性能进行了测试,发现使用 flatterbuffer 后,写性能提升了20%
环节3:在线推理,模型加载流量大
在用户进行在线推理时,我们注意到模型下载产生的流量极大,有时甚至会占满对象存储网关的带宽。深入分析这个场景后,我们发现存在众多实例,每个实例都会独立地将完整模型加载到内存中,并且这些实例几乎是同时开始加载模型的,这一行为造成了巨大的流量压力。
为解决此问题,我们借鉴了商业解决方案,采用了在 Pod 中实施逻辑分组的方法。在这种策略下,每个分组仅从底层存储读取一份完整模型,而分组内的各个节点则读取模型的部分文件,并通过节点间的数据共享(类似于 P2P 方式)来减少总体流量需求。这种方法显著降低了对底层对象存储带宽的占用,有效缓解了流量压力。

03 技术规划
libc 调用绕过 FUSE 内核,提升读写性能 下面这份图表来源于 ACM 期刊中的一篇论文。文中指出,在使用 FUSE 挂载时,请求的处理流程会先从用户态转移到内核态,然后再返回用户态。在这个流程中,上下文切换所带来的消耗是相当巨大的。
柱状图较高的部分代表原生的 FUSE,而柱状图较低的部分则代表经过优化的方案。
- 小文件场景:原生的 FUSE 相较于优化方案,其上下文次数切换的数量差距达到了 1000 倍;
- 大文件场景:原生的 FUSE 与优化方案之间的上下文次数切换的数量差距约为 100 倍;
- 混合负载场景:同样显示出了巨大的上下文次数切换的数量差异。

在论文中提到,链路消耗的主要来源是上下文切换。因此,我们计划在 FUSE 这一层进行优化,主要针对元数据和小文件场景。目前,我们正在进行方案选型工作。
自研元数据引擎,文件语义下沉
我们还计划开发一个自己的元数据引擎。当前,我们使用的元数据引擎是基于 TiKV 的,但 TiKV 并不具备文件语义,所有的文件语义都是在客户端实现的。这给我们的特性开发工作带来了极大的不便。
同时,当多个节点同时写入一个 key 时,事务冲突也会非常频繁。近期,我们还遇到了进程会突然卡住的问题,持续时间从几分钟到十几分钟不等。这个问题一直未能得到解决。
另外,TiKV PD 组件为主节点 Active 模式,请求上 10 万后,时延上升明显,PD 节点(112核)CPU 使用率接近饱和。因此,我们正在尝试一些方案来降低主节点的 CPU 利用率,以观察是否能改善耗时问题。我们参考了一些论文,如百度的 CFS 论文,将所有的元数据操作尽量变成单机事务,以减少分布式事务的开销。

缓存层实现 RDMA
通信关于我们机房的 GPU 节点,它们目前使用的是 RDMA 网络。与缓存层的通信仍然使用 TCP 协议。我们有规划开发一个基于 RDMA 的通信方式,以实现客户端与缓存之间的低延迟、低 CPU 消耗的通信。

通过观察客户端的火焰图,我们发现 RPC 通信的耗时仍然非常明显。虽然写缓存的处理数据只需要一两毫秒,但客户端将数据上传到整个链路的耗时可能达到五六毫秒,甚至十毫秒。在客户端 CPU 非常繁忙的情况下,这个时间可能会达到二三十毫秒。而 RDMA 本身并不怎么消耗 CPU,内存消耗也比较少,因此我们认为这是一个值得尝试的解决方案。
相关文章:
vivo 轩辕文件系统:AI 计算平台存储性能优化实践
在早期阶段,vivo AI 计算平台使用 GlusterFS 作为底层存储基座。随着数据规模的扩大和多种业务场景的接入,开始出现性能、维护等问题。为此,vivo 转而采用了自研的轩辕文件系统,该系统是基于 JuiceFS 开源版本开发的一款分布式文件…...
Vue学习笔记(四)
事件处理 我们可以使用 v-on 指令 (通常缩写为 符号) 来监听 DOM 事件,并在触发事件时执行一些 JavaScript。用法为 v-on:click"methodName" 或使用快捷方式 click"methodName" 事件处理器的值可以是: 内联事件处理器࿱…...
发送短信,验证码
短信 注册阿里云的账号 开通短信服务 测试短信服务是否可用 导入jar <!-- 短信相关 --><dependency><groupId>com.aliyun</groupId><artifactId>aliyun-java-sdk-core</artifactId><version>4.6.0</version><…...
国内大语言模型哪家更好用?
大家好,我是袁庭新。 过去一年,AI大语言模型在爆发式增长,呈现百家争鸣之态。国内外相关厂商积极布局,并相继推出自家研发的智能化产品。 我在工作中已习惯借助AI来辅助完成些编码、创作、文生图等任务,甚至对它们产…...
OTP一次性密码、多因子认证笔记
文章目录 双因子认证(多因子认证)otp算法(ONE-TIME PASSWORD)otp算法大概分为几部 otp的机制服务端客户端(app端)两种主流算法otp流程图 otp是通用的吗 手机验证码天天在用,但是居然不知道这个是otp,伤自尊了,必须弄清原理。 先要知道几个概念…...
玉米生长阶段检测系统源码&数据集全套:改进yolo11-dysample
改进yolo11-DLKA等200全套创新点大全:玉米生长阶段检测系统源码&数据集全套 1.图片效果展示 项目来源 人工智能促进会 2024.10.24 注意:由于项目一直在更新迭代,上面“1.图片效果展示”和“2.视频效果展示”展示的系统图片或者视…...
【机器学习】决策树算法
目录 一、决策树算法的基本原理 二、决策树算法的关键概念 三、决策树算法的应用场景 四、决策树算法的优化策略 五、代码实现 代码解释: 在机器学习领域,决策树算法是一种简单直观且易于理解的分类和回归方法。它通过学习数据特征和决策规则&#…...
P2818 天使的起誓
天使的起誓 题目描述 Tenshi 非常幸运地被选为掌管智慧之匙的天使。在正式任职之前,她必须和其他新当选的天使一样要宣誓。 宣誓仪式是每位天使各自表述自己的使命,他们的发言稿放在 n n n 个呈圆形排列的宝盒中。这些宝盒按顺时针方向被编上号码 1…...
数字信号处理实验简介
数字信号处理(Digital Signal Processing,简称DSP)是电子工程、通信、计算机科学等领域中的一个重要分支,它涉及到对离散时间信号进行分析、处理和合成的理论和方法。数字信号处理课程的实验环节通常旨在帮助学生将理论知识应用于实际问题中,通过实践加深对DSP概念和技术的…...
Flask-SQLAlchemy 组件
一、ORM 要了解 ORM 首先了解以下概念。 什么是持久化 持久化 (Persistence),即把数据(如内存中的对象)保存到可永久保存的存储设备中(如磁盘)。持久化的主要应用是将内存中的数据存储在关系型的数据库中,…...
Could not retrieve mirrorlist http://mirrorlist.centos.org错误解决方法
文章目录 背景解决方法 背景 今天在一台新服务器上安装nginx,在这个过程中需要安装相关依赖,在使用yum install命令时,发生了以下报错内容: Could not retrieve mirrorlist http://mirrorlist.centos.org/?release7&archx8…...
最新PHP网盘搜索引擎系统源码 附教程
最新PHP网盘搜索引擎系统源码 附教程,这是一个基于thinkphp5.1MySQL开发的网盘搜索引擎,可以批量导入各大网盘链接,例如百度网盘、阿里云盘、夸克网盘等。 功能特点:网盘失效检测,后台管理功能,网盘链接管…...
SpringBoot面试热题
1.Spring IOC(控制反转)和AOP(面相切面编程)的理解 控制反转意味着将对象的控制权从代码中转移到Spring IOC容器。 本来是我们自己手动new出来的对象,现在则把对象交给Spring的IOC容器管理,IOC容器作为一个对象工厂,管理对象的创建和依赖关系…...
ASP.NET Core8.0学习笔记(二十三)——EF Core自引用
一、什么是自引用 1.在常见的树状目录中,其结构如下: 每一个菜单可能有父级菜单,也可能有子菜单。但是无论是哪一级菜单,他们都是同属于菜单对象。将这个菜单对象使用代码进行描述: 在上面的代码中,主…...
springboot童装销售管理系统-计算机毕业设计源码92685
摘 要 童装销售管理系统是为童装店商家提供的在线销售管理系统,本系统的研发设计能够增加童装店商家的童装宣传和推广,提升客流量和订单量,增加商家的营业收益。原有的童装品销售系统管理采用手工管理的方式,各种童装品宣传和订单…...
OpenCV中的图像通道合并
在计算机视觉和图像处理领域,OpenCV是一个强大的工具库,它提供了从基本操作到复杂算法的广泛功能。今天,我们将通过一个简单的示例来探索OpenCV中的图像通道处理,特别是如何操作和理解BGR与RGB颜色空间的差异。 Lena图像…...
Flutter TextField和Button组件开发登录页面案例
In this section, we’ll go through building a basic login screen using the Button and TextField widgets. We’ll follow a step-bystep approach, allowing you to code along and understand each part of the process. Let’s get started! 在本节中,我们…...
【vue + mockjs】Mockjs——数据接口模拟
一、mockjs 根据规则生成随机数据,通过拦截 ajax 请求来实现"模拟前端数据接口“的作用。 二、安装 // yarn yarn add mockjs// npm npm install mockjs --save-dev 三、主要模块 mock 根据数据模板生成对应的随机数据Random 工具函数, 调用具体的类型函数…...
ssm订餐系统-计算机毕业设计源码26763
摘 要 本文提出了基于SSM框架的订餐系统的设计与实现。该系统通过前后端分离的方式,采用SpringMVCSpringMyBatis(SSM)框架进行开发,实现了用户注册、登录、点餐、购物车、订单管理等功能。系统设计了用户注册模块,用户…...
4.2-7 运行MR应用:词频统计
文章目录 1. 准备数据文件2. 文件上传到HDFS指定目录2.1 创建HDFS目录2.2 上传文件到HDFS2.3 查看上传的文件 3. 运行词频统计程序的jar包3.1 查看Hadoop自带示例jar包3.2 运行示例jar包里的词频统计 4. 查看词频统计结果5. 在HDFS集群UI界面查看结果文件6. 在YARN集群UI界面查…...
eNSP-Cloud(实现本地电脑与eNSP内设备之间通信)
说明: 想象一下,你正在用eNSP搭建一个虚拟的网络世界,里面有虚拟的路由器、交换机、电脑(PC)等等。这些设备都在你的电脑里面“运行”,它们之间可以互相通信,就像一个封闭的小王国。 但是&#…...
超短脉冲激光自聚焦效应
前言与目录 强激光引起自聚焦效应机理 超短脉冲激光在脆性材料内部加工时引起的自聚焦效应,这是一种非线性光学现象,主要涉及光学克尔效应和材料的非线性光学特性。 自聚焦效应可以产生局部的强光场,对材料产生非线性响应,可能…...
基于距离变化能量开销动态调整的WSN低功耗拓扑控制开销算法matlab仿真
目录 1.程序功能描述 2.测试软件版本以及运行结果展示 3.核心程序 4.算法仿真参数 5.算法理论概述 6.参考文献 7.完整程序 1.程序功能描述 通过动态调整节点通信的能量开销,平衡网络负载,延长WSN生命周期。具体通过建立基于距离的能量消耗模型&am…...
Oracle查询表空间大小
1 查询数据库中所有的表空间以及表空间所占空间的大小 SELECTtablespace_name,sum( bytes ) / 1024 / 1024 FROMdba_data_files GROUP BYtablespace_name; 2 Oracle查询表空间大小及每个表所占空间的大小 SELECTtablespace_name,file_id,file_name,round( bytes / ( 1024 …...
Debian系统简介
目录 Debian系统介绍 Debian版本介绍 Debian软件源介绍 软件包管理工具dpkg dpkg核心指令详解 安装软件包 卸载软件包 查询软件包状态 验证软件包完整性 手动处理依赖关系 dpkg vs apt Debian系统介绍 Debian 和 Ubuntu 都是基于 Debian内核 的 Linux 发行版ÿ…...
可靠性+灵活性:电力载波技术在楼宇自控中的核心价值
可靠性灵活性:电力载波技术在楼宇自控中的核心价值 在智能楼宇的自动化控制中,电力载波技术(PLC)凭借其独特的优势,正成为构建高效、稳定、灵活系统的核心解决方案。它利用现有电力线路传输数据,无需额外布…...
visual studio 2022更改主题为深色
visual studio 2022更改主题为深色 点击visual studio 上方的 工具-> 选项 在选项窗口中,选择 环境 -> 常规 ,将其中的颜色主题改成深色 点击确定,更改完成...
1.3 VSCode安装与环境配置
进入网址Visual Studio Code - Code Editing. Redefined下载.deb文件,然后打开终端,进入下载文件夹,键入命令 sudo dpkg -i code_1.100.3-1748872405_amd64.deb 在终端键入命令code即启动vscode 需要安装插件列表 1.Chinese简化 2.ros …...
(二)原型模式
原型的功能是将一个已经存在的对象作为源目标,其余对象都是通过这个源目标创建。发挥复制的作用就是原型模式的核心思想。 一、源型模式的定义 原型模式是指第二次创建对象可以通过复制已经存在的原型对象来实现,忽略对象创建过程中的其它细节。 📌 核心特点: 避免重复初…...
企业如何增强终端安全?
在数字化转型加速的今天,企业的业务运行越来越依赖于终端设备。从员工的笔记本电脑、智能手机,到工厂里的物联网设备、智能传感器,这些终端构成了企业与外部世界连接的 “神经末梢”。然而,随着远程办公的常态化和设备接入的爆炸式…...
