当前位置: 首页 > news >正文

Go语言基础教程:可变参数函数

Go 语言允许函数接收可变数量的参数,这种特性对于处理数量不确定的参数特别有用。在本教程中,我们将通过示例代码讲解如何定义和使用 Go 的可变参数函数。

package mainimport "fmt"// 定义一个可变参数函数 sum,接收任意数量的整型参数
func sum(nums ...int) {fmt.Print(nums, " ")total := 0for _, num := range nums {total += num}fmt.Println(total)
}func main() {// 直接传入不同数量的参数sum(1, 2)         // 输出: [1 2] 3sum(1, 2, 3)      // 输出: [1 2 3] 6// 使用切片作为参数nums := []int{1, 2, 3, 4}sum(nums...)      // 输出: [1 2 3 4] 10
}

相关文章:

Go语言基础教程:可变参数函数

Go 语言允许函数接收可变数量的参数,这种特性对于处理数量不确定的参数特别有用。在本教程中,我们将通过示例代码讲解如何定义和使用 Go 的可变参数函数。 package mainimport "fmt"// 定义一个可变参数函数 sum,接收任意数量的整…...

高并发场景下解决并发数据不一致

简单的场景: 全量数据更新的情况下, 不在乎同一秒的请求都必须要成功, 只留下最新的更新请求数据 方案常用的是 1、数据库增加时间戳标识实现的乐观锁, 请求参数从源头带上微秒或者毫秒时间戳数据库存储, 然后在更新SQL语句上比较 (数据库的时间 < 参数传递的时间) 例如: A…...

OpenAI GPT-o1实现方案记录与梳理

本篇文章用于记录从各处收集到的o1复现方案的推测以及介绍 目录 Journey Learning - 上海交通大学NYUMBZUAIGAIRCore IdeaKey QuestionsKey TechnologiesTrainingInference A Tutorial on LLM Reasoning: Relevant methods behind ChatGPT o1 - UCL汪军教授Core Idea先导自回归…...

Excel:vba实现生成随机数

Sub 生成随机数字()Dim randomNumber As IntegerDim minValue As IntegerDim maxValue As Integer 设置随机数的范围(假入班级里面有43个学生&#xff0c;学号是从1→43)minValue 1maxValue 43 生成随机数(在1到43之间生成随机数)randomNumber Application.WorksheetFunctio…...

Python | Leetcode Python题解之第506题相对名次

题目&#xff1a; 题解&#xff1a; class Solution:desc ("Gold Medal", "Silver Medal", "Bronze Medal")def findRelativeRanks(self, score: List[int]) -> List[str]:ans [""] * len(score)arr sorted(enumerate(score), …...

安全见闻(6)

声明&#xff1a;学习视频来自b站up主 泷羽sec&#xff0c;如涉及侵权马上删除文章 感谢泷羽sec 团队的教学 视频地址&#xff1a;安全见闻&#xff08;6&#xff09;_哔哩哔哩_bilibili 学无止境&#xff0c;开拓自己的眼界才能走的更远 本文主要讲解通讯协议涉及的安全问题。…...

Promise、async、await 、异步生成器的错误处理方案

1、Promise.all 的错误处理 Promise.all 方法接受一个 Promise 数组&#xff0c;并返回所有解析 Promise 的结果数组&#xff1a; const promise1 Promise.resolve("one"); const promise2 Promise.resolve("two");Promise.all([promise1, promise2]).…...

腾讯云:数智教育专场-学习笔记

15点13分2024年10月21日&#xff08;短短5天的时间&#xff0c;自己的成长速度更加惊人&#xff09;-开始进行“降本增效”学习模式&#xff0c;根据小米手环对于自己的行为模式分析&#xff08;不断地寻找数据之间的关联性&#xff09;&#xff0c;每天高效记忆时间&#xff0…...

Ovis: 多模态大语言模型的结构化嵌入对齐

论文题目&#xff1a;Ovis: Structural Embedding Alignment for Multimodal Large Language Model 论文地址&#xff1a;https://arxiv.org/pdf/2405.20797 github地址&#xff1a;https://github.com/AIDC-AI/Ovis/?tabreadme-ov-file 今天&#xff0c;我将分享一项重要的研…...

python的Django的render_to_string函数和render函数模板的使用

一、render_to_string render_to_string 是 Django 框架中的一个便捷函数&#xff0c;用于将模板渲染为字符串。 render_to_string(template_name.html, context, requestNone, usingNone) template_name.html&#xff1a;要渲染的模板文件的名称。context&#xff1a;传递给…...

基于Python大数据的王者荣耀战队数据分析及可视化系统

作者&#xff1a;计算机学姐 开发技术&#xff1a;SpringBoot、SSM、Vue、MySQL、JSP、ElementUI、Python、小程序等&#xff0c;“文末源码”。 专栏推荐&#xff1a;前后端分离项目源码、SpringBoot项目源码、Vue项目源码、SSM项目源码、微信小程序源码 精品专栏&#xff1a;…...

【Linux学习】(3)Linux的基本指令操作

前言 配置Xshell登录远程服务器Linux的基本指令——man、cp、mv、alias&which、cat&more&less、head&tail、date、cal、find、grep、zip&tar、bc、unameLinux常用热键 一、配置Xshell登录远程服务器 以前我们登录使用指令&#xff1a; ssh 用户名你的公网…...

Mac 使用脚本批量导入 Apple 歌曲

最近呢&#xff0c;买了一个 iPad&#xff0c;虽然家里笔记本台式都有&#xff0c;显示器都是 2个&#xff0c;比较方便看代码&#xff08;边打游戏边追剧&#xff09;。 但是在床上拿笔记本始终还是不方便&#xff0c;手机在家看还是小了点&#xff0c;自从有 iPad 之后&…...

全桥PFC电路及MATLAB仿真

一、PFC电路原理概述 PFC全称“Power Factor Correction”&#xff08;功率因数校正&#xff09;&#xff0c;PFC电路即能对功率因数进行校正&#xff0c;或者说是能提高功率因数的电路。是开关电源中很常见的电路。功率因数是用来描述电力系统中有功功率&#xff08;实际使用…...

【安当产品应用案例100集】025-确保数据安全传输——基于KMS与HSM的定期分发加密解决方案

引言&#xff1a; 在当今快速发展的数字化时代&#xff0c;企业面临着前所未有的信息安全挑战。尤其是在需要向供应商定期分发敏感数据的情况下&#xff0c;如何保证这些数据在传输过程中的安全性变得至关重要。为此&#xff0c;我们推出了结合安当KMS密钥管理平台与HSM密码机…...

十 缺陷检测解决策略之三:频域+空域

十 缺陷检测解决策略之三:频域空域 read_image (Image, 矩形) * 中间低频&#xff0c;四周高频 fft_image (Image, ImageFFT) * 中间低频&#xff0c;四周高频 fft_generic (Image, ImageFFT1, to_freq, -1, sqrt, dc_center, complex) * 中间高频&#xff0c;四周低频 rft_ge…...

有望第一次走出慢牛

A股已走完30多年历程。 大约每十年&#xff0c;会经历一轮牛熊周期。特点是每一轮周期&#xff0c;大约九成的时间都是熊市主导。就是我们常说的 快牛慢熊。 这一次&#xff0c;会不会重复历史? 历史不会简单重复。已经感受到了盘面的变化。 有人说&#xff0c;股市爆涨爆…...

计算机网络(十二) —— 高级IO

#1024程序员节 | 征文# 目录 一&#xff0c;预备 1.1 重新理解IO 1.2 五种IO模型 1.3 非阻塞IO 二&#xff0c;select 2.1 关于select 2.2 select接口参数解释 2.3 timeval结构体和fd_set类型 2.4 socket就绪条件 2.5 select基本工作流程 2.6 简单select的服务器代…...

电力行业 | 等保测评(网络安全等级保护)工作全解

电力行业为什么要做网络安全等级保护&#xff1f; 电力行业是关系到国家安全和社会稳定的基础性行业&#xff0c;电力行业信息化程度相对较高&#xff0c;是首批国家信息安全等级保护的重点行业。 01 国家法律法规的要求 1994《计算机信息系统安全保护条例》&#xff08;国务…...

总裁主题CeoMax-Pro主题7.6开心版

激活方式&#xff1a; 1.授权接口源码ceotheme-auth-api.zip搭建一个站点&#xff0c;绑定www.ceotheme.com域名&#xff0c;并配置任意一个域名的 SSL 证书。 2.在 hosts 中添加&#xff1a;127.0.0.1 www.ceotheme.com 3.上传class-wp-http.php到wp-includes目录&#xff…...

使用docker在3台服务器上搭建基于redis 6.x的一主两从三台均是哨兵模式

一、环境及版本说明 如果服务器已经安装了docker,则忽略此步骤,如果没有安装,则可以按照一下方式安装: 1. 在线安装(有互联网环境): 请看我这篇文章 传送阵>> 点我查看 2. 离线安装(内网环境):请看我这篇文章 传送阵>> 点我查看 说明&#xff1a;假设每台服务器已…...

Prompt Tuning、P-Tuning、Prefix Tuning的区别

一、Prompt Tuning、P-Tuning、Prefix Tuning的区别 1. Prompt Tuning(提示调优) 核心思想:固定预训练模型参数,仅学习额外的连续提示向量(通常是嵌入层的一部分)。实现方式:在输入文本前添加可训练的连续向量(软提示),模型只更新这些提示参数。优势:参数量少(仅提…...

Java如何权衡是使用无序的数组还是有序的数组

在 Java 中,选择有序数组还是无序数组取决于具体场景的性能需求与操作特点。以下是关键权衡因素及决策指南: ⚖️ 核心权衡维度 维度有序数组无序数组查询性能二分查找 O(log n) ✅线性扫描 O(n) ❌插入/删除需移位维护顺序 O(n) ❌直接操作尾部 O(1) ✅内存开销与无序数组相…...

Python Ovito统计金刚石结构数量

大家好,我是小马老师。 本文介绍python ovito方法统计金刚石结构的方法。 Ovito Identify diamond structure命令可以识别和统计金刚石结构,但是无法直接输出结构的变化情况。 本文使用python调用ovito包的方法,可以持续统计各步的金刚石结构,具体代码如下: from ovito…...

(一)单例模式

一、前言 单例模式属于六大创建型模式,即在软件设计过程中,主要关注创建对象的结果,并不关心创建对象的过程及细节。创建型设计模式将类对象的实例化过程进行抽象化接口设计,从而隐藏了类对象的实例是如何被创建的,封装了软件系统使用的具体对象类型。 六大创建型模式包括…...

从“安全密码”到测试体系:Gitee Test 赋能关键领域软件质量保障

关键领域软件测试的"安全密码"&#xff1a;Gitee Test如何破解行业痛点 在数字化浪潮席卷全球的今天&#xff0c;软件系统已成为国家关键领域的"神经中枢"。从国防军工到能源电力&#xff0c;从金融交易到交通管控&#xff0c;这些关乎国计民生的关键领域…...

破解路内监管盲区:免布线低位视频桩重塑停车管理新标准

城市路内停车管理常因行道树遮挡、高位设备盲区等问题&#xff0c;导致车牌识别率低、逃费率高&#xff0c;传统模式在复杂路段束手无策。免布线低位视频桩凭借超低视角部署与智能算法&#xff0c;正成为破局关键。该设备安装于车位侧方0.5-0.7米高度&#xff0c;直接规避树枝遮…...

医疗AI模型可解释性编程研究:基于SHAP、LIME与Anchor

1 医疗树模型与可解释人工智能基础 医疗领域的人工智能应用正迅速从理论研究转向临床实践,在这一过程中,模型可解释性已成为确保AI系统被医疗专业人员接受和信任的关键因素。基于树模型的集成算法(如RandomForest、XGBoost、LightGBM)因其卓越的预测性能和相对良好的解释性…...

【java】【服务器】线程上下文丢失 是指什么

目录 ■前言 ■正文开始 线程上下文的核心组成部分 为什么会出现上下文丢失&#xff1f; 直观示例说明 为什么上下文如此重要&#xff1f; 解决上下文丢失的关键 总结 ■如果我想在servlet中使用线程&#xff0c;代码应该如何实现 推荐方案&#xff1a;使用 ManagedE…...

React、Git、计网、发展趋势等内容——前端面试宝典(字节、小红书和美团)

React React Hook实现架构、.Hook不能在循环嵌套语句中使用 , 为什么&#xff0c;Fiber架构&#xff0c;面试向面试官介绍&#xff0c;详细解释 用户: React Hook实现架构、.Hook不能在循环嵌套语句中使用 , 为什么&#xff0c;Fiber架构&#xff0c;面试向面试官介绍&#x…...