当前位置: 首页 > news >正文

堆的应用——堆排序和TOP-K问题

1.堆排序

想法⼀:

基于已有数组建堆、取堆顶元素完成排序。也就是利用写好的堆数据结构(之前的文章有讲解),去实现排序。

void HeapSort(int* a, int n){HP hp;for(int i = 0; i < n; i++){HPPush(&hp,a[i]);}int i = 0;while (!HPEmpty(&hp)){a[i++] = HPTop(&hp);HPPop(&hp);}HPDestroy(&hp);

先依次入堆,然后再将堆顶,数据依次取出,为大堆即是降序,小堆为升序。实际上这种方法使用起来是很不方便的,必须要有堆的数据结构,而且时间复杂度为O(n)。

想法⼆:

数组建堆,⾸尾交换,交换后的堆尾数据从堆中删掉,将堆顶数据向下调整选出次⼤的数据。

void HeapSort(int* arr, int n)
{//根据给定的arr来进行建堆//child:n-1  parent:(n-1-1)/2向下调整算法建堆//for (int i = (n - 1 - 1) / 2; i >= 0; i--)//O(n)//{//	AdjustDown(arr, i, n);//O(logn)//}//向上调整建堆for (int i = 0; i < n; i++){AdjustUp(arr, i);}//堆排序//排升序---建大堆//排降序---建小堆int end = n - 1;while (end > 0){Swap(&arr[0], &arr[end]);AdjustDown(arr, 0, end);end--;}}

这里利用的是堆的思想,而不是直接用堆来排序,首先要建堆,将传进来的数组入堆,这里以建小堆为例,利用向下调整的方法,将一个个依次调整直到,直到根节点;

这里完成了建堆,那后面接下来,排序怎么办,其实利用思想将堆顶元素,与最后一个元素交换,再将元素个数减一,将剩余的堆进行调整,依次交换直到到堆顶。最后发现建的小堆,其实是降序排列,反之降序是建小堆。

这样就排序完成。

注意:这里考虑一个问题,向上调整可以建堆,向下调整也可以建堆,那个时间复杂度更低。

1.2向上调整算法和向下调整算法比较:

向上调整算法:

往下结点个数逐渐增多,向下调整次数增多;

可以推出向上调整建堆时间的复杂度:O(n*logn);

向下调整算法:

可以推出向下调整建堆时间的复杂度:O(n);

比较发现向下调整算法更优。

2.TOP-K问题

TOP-K问题:即求数据结合中前K个最⼤的元素或者最⼩的元素,⼀般情况下数据量都⽐较⼤。 ⽐如:专业前10名、世界500强、富豪榜、游戏中前100的活跃玩家等。 对于Top-K问题,能想到的最简单直接的⽅式就是排序,但是:如果数据量⾮常⼤,排序就不太可取了 (可能数据都不能⼀下⼦全部加载到内存中)。最佳的⽅式就是⽤堆来解决,基本思路如下:

第一步:⽤数据集合中前K个元素来建堆

(这和前面堆排序有一些相似)

前k个最⼤的元素,则建⼩堆;

前k个最小的元素,则建⼤堆;

第二步:⽤剩余的N-K个元素依次与堆顶元素来⽐较,不满⾜则替换堆顶元素

将剩余N-K个元素依次与堆顶元素⽐完之后,堆中剩余的K个元素就是所求的前K个最⼩或者最⼤的元素

void TopK()
{int k = 0;printf("请输入K:");scanf("%d", &k);const char* file = "data.txt";FILE* fout = fopen(file, "r");if (fout == NULL){perror("fopen error");exit(1);}//找最大的前K个数,建小堆int* minHeap = (int*)malloc(sizeof(int) * k);if (minHeap == NULL){perror("malloc fail!");exit(2);}//读取文件中前K个数据建堆for (int i = 0; i < k; i++){fscanf(fout, "%d", &minHeap[i]);}//建堆for (int i = (k - 1 - 1) / 2; i >= 0; i--){AdjustDown(minHeap, i, k);}//遍历剩下的n-k个数据,跟堆顶比较,谁大谁入堆//调整堆int x = 0;while (fscanf(fout, "%d", &x) != EOF){if (x > minHeap[0]){minHeap[0] = x;AdjustDown(minHeap, 0, k);}}for (int i = 0; i < k; i++){printf("%d ", minHeap[i]);}fclose(fout);
}

这里一些文件操作函数,可以看看小编前面的文章有讲解。

相关文章:

堆的应用——堆排序和TOP-K问题

1.堆排序 想法⼀&#xff1a; 基于已有数组建堆、取堆顶元素完成排序。也就是利用写好的堆数据结构&#xff08;之前的文章有讲解&#xff09;&#xff0c;去实现排序。 void HeapSort(int* a, int n){HP hp;for(int i 0; i < n; i){HPPush(&hp,a[i]);}int i 0;whi…...

探秘 MySQL 数据类型的艺术:性能与存储的精妙平衡

文章目录 前言&#x1f380;一、数据类型分类&#x1f380;二、整数类型&#xff08;举例 TINYINT 和 INT &#xff09;&#x1f3ab;2.1 TINYINT 和 INT 类型的定义2.1.1 TINYINT2.1.2 INT &#x1f3ab;2.2 表的操作示例2.2.1 创建包含 TINYINT 和 INT 类型的表2.2.2 插入数据…...

使用任意绘图软件自学并结合上课所学内容完成数据库原理图绘制

本次绘图采用亿图图示软件...

static、 静态导入、成员变量的初始化、单例模式、final 常量(Content)、嵌套类、局部类、抽象类、接口、Lambda、方法引用

static static 常用来修饰类的成员&#xff1a;成员变量、方法、嵌套类 成员变量 被static修饰&#xff1a;类变量、成员变量、静态字段 在程序中只占用一段固定的内存&#xff08;存储在方法区&#xff09;&#xff0c;所有对象共享可以通过实例、类访问 (一般用类名访问和修…...

基于SSM的智能养生平台管理系统源码带本地搭建教程

技术栈与架构 技术框架&#xff1a;采用SSM&#xff08;Spring Spring MVC MyBatis&#xff09;作为后端开发框架&#xff0c;结合前端技术栈layui、JSP、Bootstrap与jQuery&#xff0c;以及数据库MySQL 5.7&#xff0c;共同构建项目。 运行环境&#xff1a;项目在JDK 8环境…...

Latex中文排版字体和字号

中文排版 最近常用latex排版&#xff0c;也遇到了很多问题。这里对于主要的参考文章做一个总结和推荐。 一份不太简短的 LaTeX2ε 介绍【中文资料】ctex宏包用户手册&#xff0c;用户手册使用 命令行texdoc ctex 这两个文档都是中文的&#xff0c;而且几乎解决了我90%的排版…...

[C++ 11] 列表初始化:轻量级对象initializer_list

C发展历史 C11是C语言的第二个主要版本&#xff0c;也是自C98以来最重要的一次更新。它引入了大量的新特性&#xff0c;标准化了已有的实践&#xff0c;并极大地改进了C程序员可用的抽象能力。在2011年8月12日被ISO正式采纳之前&#xff0c;人们一直使用“C0x”这个名称&#…...

【NodeJS】NodeJS+mongoDB在线版开发简单RestfulAPI (八):API说明(暂时完结,后续考虑将在线版mongoDB变为本地版)

本项目旨在学习如何快速使用 nodejs 开发后端api&#xff0c;并为以后开展其他项目的开启提供简易的后端模版。&#xff08;非后端工程师&#xff09; 由于文档是代码写完之后&#xff0c;为了记录项目中需要注意的技术点&#xff0c;因此文档的叙述方式并非开发顺序&#xff0…...

manictime整合两个数据库的数据

作用 老电脑崩溃了,有个1t.db&#xff0c; 新电脑有个3t.db 那么重装系统后就想整合起来用。 整合前文件大小 整合命令 .\mtdb.exe importtimelines -sdbpa ManicTimeCore-1t.db -dbpa ManicTimeCore-3t.db -tt ManicTime/ComputerUsage,ManicTime/Applications,ManicTime…...

Spring Boot植物健康系统:智慧农业的新趋势

6系统测试 6.1概念和意义 测试的定义&#xff1a;程序测试是为了发现错误而执行程序的过程。测试(Testing)的任务与目的可以描述为&#xff1a; 目的&#xff1a;发现程序的错误&#xff1b; 任务&#xff1a;通过在计算机上执行程序&#xff0c;暴露程序中潜在的错误。 另一个…...

(三)第一个Qt程序“Qt版本的HelloWorld”

一、随记 我们在学习编程语言的时候&#xff0c;各种讲解编程语言的书籍中通常都会以一个非常经典的“HelloWorld”程序展开详细讲解。程序虽然简短&#xff0c;但是“麻雀虽小&#xff0c;五脏俱全”&#xff0c;但是却非常适合用来熟悉程序结构、规范&#xff0c;快速形成对编…...

【Python知识】一个强大的数据分析库Pandas

文章目录 Pandas概述1. 安装 Pandas2. 基本数据结构3. 数据导入和导出4. 数据清洗5. 数据选择和过滤6. 数据聚合和摘要7. 数据合并和连接8. 数据透视表9. 时间序列分析10. 数据可视化 &#x1f4c8; 如何使用 Pandas 进行复杂的数据分析&#xff1f;1. 数据预处理2. 处理缺失值…...

10.26学习

1.整形的定义和输出 在C语言中&#xff0c;整形&#xff08;Integer&#xff09;是一种基本数据类型&#xff0c;用于存储整数。整形变量可以是正数、负数或零。在定义和输出整形变量时&#xff0c;需要注意以下几点&#xff1a; ①定义整形变量&#xff1a; 使用 int 关键字…...

CSS易漏知识

复杂选择器可以通过&#xff08;id的个数&#xff0c;class的个数&#xff0c;标签的个数&#xff09;的形式&#xff0c;计算权重。 如果我们需要将某个选择器的某条属性提升权重&#xff0c;可以在属性后面写!important&#xff1b;注意!importent要写在;前面 很多公司不允许…...

【10天速通Navigation2】(三) :Cartographer建图算法配置:从仿真到实车,从原理到实现

前言 往期内容&#xff1a; 第一期&#xff1a;【10天速通Navigation2】(一) 框架总览和概念解释第二期&#xff1a;【10天速通Navigation2】(二) &#xff1a;ROS2gazebo阿克曼小车模型搭建-gazebo_ackermann_drive等插件的配置和说明 本教材将贯穿nav2的全部内容&#xff0c…...

测试造数,excel转insert语句

目录 excel转sql的insert语句一、背景二、直接上代码 excel转sql的insert语句 一、背景 在实际测试工作中&#xff0c;需要频繁地进行测试造数并插入数据库验证&#xff0c;常规的手写sql语句过于浪费时间&#xff0c;为此简单写个脚本&#xff0c;通过excel来造数&#xff0…...

Python 应用可观测重磅上线:解决 LLM 应用落地的“最后一公里”问题

作者&#xff1a;彦鸿 背景 随着 LLM&#xff08;大语言模型&#xff09;技术的不断成熟和应用场景的不断拓展&#xff0c;越来越多的企业开始将 LLM 技术纳入自己的产品和服务中。LLM 在自然语言处理方面表现出令人印象深刻的能力。然而&#xff0c;其内部机制仍然不明确&am…...

从零开始:用Spring Boot搭建厨艺分享网站

2 相关技术 2.1 Spring Boot框架简介 Spring Boot是由Pivotal团队提供的全新框架&#xff0c;其设计目的是用来简化新Spring应用的初始搭建以及开发过程。该框架使用了特定的方式来进行配置&#xff0c;从而使开发人员不再需要定义样板化的配置。通过这种方式&#xff0c;Sprin…...

《2024中国泛娱乐出海洞察报告》解析,垂直且多元化方向发展!

随着以“社交”为代表的全球泛娱乐市场规模不断扩大以及用户需求不断细化&#xff0c;中国泛娱乐出海产品正朝着更加垂直化、多元化的方向发展。基于此&#xff0c;《2024中国泛娱乐出海洞察报告》深入剖析了中国泛娱乐行业出海进程以及各细分赛道出海现状及核心特征。针对中国…...

强化学习数学原理学习(一)

前言 总之开始学! 正文 先从一些concept开始吧,有一个脉络比较好 state 首先是就是状态和状态空间,显而易见,不多说了 action 同理,动作和动作空间 state transition 状态转换,不多说 policy 策略,不多说 reward 奖励,不多说 MDP(马尔科夫) 这里需要注意到就是这个是无…...

大数据学习栈记——Neo4j的安装与使用

本文介绍图数据库Neofj的安装与使用&#xff0c;操作系统&#xff1a;Ubuntu24.04&#xff0c;Neofj版本&#xff1a;2025.04.0。 Apt安装 Neofj可以进行官网安装&#xff1a;Neo4j Deployment Center - Graph Database & Analytics 我这里安装是添加软件源的方法 最新版…...

云原生核心技术 (7/12): K8s 核心概念白话解读(上):Pod 和 Deployment 究竟是什么?

大家好&#xff0c;欢迎来到《云原生核心技术》系列的第七篇&#xff01; 在上一篇&#xff0c;我们成功地使用 Minikube 或 kind 在自己的电脑上搭建起了一个迷你但功能完备的 Kubernetes 集群。现在&#xff0c;我们就像一个拥有了一块崭新数字土地的农场主&#xff0c;是时…...

7.4.分块查找

一.分块查找的算法思想&#xff1a; 1.实例&#xff1a; 以上述图片的顺序表为例&#xff0c; 该顺序表的数据元素从整体来看是乱序的&#xff0c;但如果把这些数据元素分成一块一块的小区间&#xff0c; 第一个区间[0,1]索引上的数据元素都是小于等于10的&#xff0c; 第二…...

如何在看板中体现优先级变化

在看板中有效体现优先级变化的关键措施包括&#xff1a;采用颜色或标签标识优先级、设置任务排序规则、使用独立的优先级列或泳道、结合自动化规则同步优先级变化、建立定期的优先级审查流程。其中&#xff0c;设置任务排序规则尤其重要&#xff0c;因为它让看板视觉上直观地体…...

Objective-C常用命名规范总结

【OC】常用命名规范总结 文章目录 【OC】常用命名规范总结1.类名&#xff08;Class Name)2.协议名&#xff08;Protocol Name)3.方法名&#xff08;Method Name)4.属性名&#xff08;Property Name&#xff09;5.局部变量/实例变量&#xff08;Local / Instance Variables&…...

【大模型RAG】Docker 一键部署 Milvus 完整攻略

本文概要 Milvus 2.5 Stand-alone 版可通过 Docker 在几分钟内完成安装&#xff1b;只需暴露 19530&#xff08;gRPC&#xff09;与 9091&#xff08;HTTP/WebUI&#xff09;两个端口&#xff0c;即可让本地电脑通过 PyMilvus 或浏览器访问远程 Linux 服务器上的 Milvus。下面…...

稳定币的深度剖析与展望

一、引言 在当今数字化浪潮席卷全球的时代&#xff0c;加密货币作为一种新兴的金融现象&#xff0c;正以前所未有的速度改变着我们对传统货币和金融体系的认知。然而&#xff0c;加密货币市场的高度波动性却成为了其广泛应用和普及的一大障碍。在这样的背景下&#xff0c;稳定…...

JAVA后端开发——多租户

数据隔离是多租户系统中的核心概念&#xff0c;确保一个租户&#xff08;在这个系统中可能是一个公司或一个独立的客户&#xff09;的数据对其他租户是不可见的。在 RuoYi 框架&#xff08;您当前项目所使用的基础框架&#xff09;中&#xff0c;这通常是通过在数据表中增加一个…...

AI+无人机如何守护濒危物种?YOLOv8实现95%精准识别

【导读】 野生动物监测在理解和保护生态系统中发挥着至关重要的作用。然而&#xff0c;传统的野生动物观察方法往往耗时耗力、成本高昂且范围有限。无人机的出现为野生动物监测提供了有前景的替代方案&#xff0c;能够实现大范围覆盖并远程采集数据。尽管具备这些优势&#xf…...

探索Selenium:自动化测试的神奇钥匙

目录 一、Selenium 是什么1.1 定义与概念1.2 发展历程1.3 功能概述 二、Selenium 工作原理剖析2.1 架构组成2.2 工作流程2.3 通信机制 三、Selenium 的优势3.1 跨浏览器与平台支持3.2 丰富的语言支持3.3 强大的社区支持 四、Selenium 的应用场景4.1 Web 应用自动化测试4.2 数据…...