京东双十一高并发场景下的分布式锁性能优化
背景
在电商领域,尤其是像京东双十一这样的大促活动,系统需要处理极高的并发请求。这些请求往往涉及库存的查询和更新,如果处理不当,很容易出现库存超卖、数据不一致等问题。分布式锁作为一种有效的解决方案,能够在多个节点之间协调访问资源,确保在同一时间只有一个节点能够执行关键操作。然而,在高并发场景下,分布式锁的性能成为了一个重要的挑战。本文将深入探讨如何在京东双十一高并发场景下提升分布式锁的性能,从背景、场景、功能、底层原理到Java代码实现,进行详细的介绍和分析。
场景
在京东双十一期间,用户访问量激增,系统需要处理大量的并发请求。这些请求可能涉及库存的查询和更新,如果处理不当,很容易出现库存超卖的问题。例如,假设库存表中有100件商品,两个线程同时读到了库存为100,然后分别执行减1并写回数据库,结果数据库数据为99而不是预期的98。为了避免这种情况,可以使用分布式锁来确保在同一时间只有一个线程能够执行库存的查询和更新操作。
功能
分布式锁的主要功能是确保在分布式系统中,多个服务在请求同一个方法或者同一个业务操作的情况下,对应的业务逻辑只能被一台机器上的一个线程执行。这样可以避免并发问题,确保数据的一致性。在京东双十一这样的高并发场景下,分布式锁的性能优化尤为重要,因为它直接影响到系统的吞吐量和响应时间。
底层原理
Redis锁
Redis锁是一种常见的分布式锁实现方式。它利用Redis的原子操作来实现锁的获取和释放。Redis提供了SETNX(Set if Not Exists)命令,可以在key不存在时设置value,并返回1表示成功,否则返回0表示失败。结合EXPIRE命令,可以设置锁的过期时间,防止死锁的发生。
然而,SETNX和EXPIRE命令并不是原子的,如果在执行SETNX之后、EXPIRE之前Redis服务器宕机,那么锁就会永久存在,导致死锁。为了解决这个问题,Redis 2.8版本引入了SETEX命令,可以一次性设置key的值和过期时间,保证加锁过程的原子性。
RedLoc锁
RedLoc锁是一种基于Redis的分布式锁实现,但它通过一些优化措施提升了性能。例如,它采用了分段锁的策略,将商品库存划分为多个部分,每个部分对应一个独立的Redis锁。当请求到来时,随机选取一份库存进行加锁,实现多请求并行处理,从而提升系统吞吐量。在库存不足时,及时释放锁并切换到其他库存段。
Java代码实现与分析
下面是一个基于Redis的分布式锁的实现示例,以及一个使用RedLoc锁优化后的实现示例。
Redis锁实现
java复制代码
import redis.clients.jedis.Jedis;
public class RedisLock {
private Jedis jedis;
private String lockKey;
public RedisLock(Jedis jedis, String lockKey) {
this.jedis = jedis;
this.lockKey = lockKey; }
public boolean acquireLock(long timeout) {
long expireTime = System.currentTimeMillis() + timeout;
while (System.currentTimeMillis() < expireTime) {
if (jedis.setnx(lockKey, "locked")) { jedis.expire(lockKey, (int) (timeout / 1000));
return true; }
if (jedis.ttl(lockKey) == -1) { jedis.expire(lockKey, (int) (timeout / 1000)); }
try { Thread.sleep(100); } catch (InterruptedException e) { Thread.currentThread().interrupt(); } }
return false; }
public void releaseLock() { jedis.del(lockKey); }
}
在这个实现中,我们使用Jedis作为Redis的客户端。acquireLock方法尝试获取锁,如果获取成功,则设置锁的过期时间。如果获取失败,则检查锁的过期时间,如果已过期,则重新设置过期时间,并继续等待获取锁。releaseLock方法用于释放锁。
RedLoc锁实现
java复制代码
import redis.clients.jedis.Jedis;
import java.util.concurrent.ThreadLocalRandom;
public class RedLocLock {
private Jedis jedis;
private String lockKeyPrefix;
private int segmentCount;
public RedLocLock(Jedis jedis, String lockKeyPrefix, int segmentCount) {
this.jedis = jedis;
this.lockKeyPrefix = lockKeyPrefix;
this.segmentCount = segmentCount; }
public boolean acquireLock(String requestId) {
int segmentIndex = ThreadLocalRandom.current().nextInt(segmentCount);
String lockKey = lockKeyPrefix + "_" + segmentIndex;
if (jedis.setnx(lockKey, requestId)) { jedis.expire(lockKey, 10);
return true; }
return false; }
public void releaseLock(String requestId) {
for (int i = 0; i < segmentCount; i++) {
String lockKey = lockKeyPrefix + "_" + i;
if (requestId.equals(jedis.get(lockKey))) { jedis.del(lockKey);
break; } } }
}
在这个实现中,我们使用了分段锁的策略。acquireLock方法随机选取一个库存段进行加锁,如果获取成功,则设置锁的过期时间。releaseLock方法遍历所有库存段,找到对应的锁并释放。
分布式锁的性能主要体现在以下几个方面:
1. 获取锁的速度
- 延迟:获取锁的时间延迟是衡量分布式锁性能的重要指标。在高并发场景下,如果获取锁的速度慢,会导致大量请求等待锁,从而影响系统的响应时间和吞吐量。
- 并发处理能力:分布式锁需要能够在高并发情况下快速处理多个请求,确保系统的并发处理能力。
2. 锁的释放速度
- 延迟:释放锁的时间延迟同样重要。如果释放锁的速度慢,会导致持有锁的线程或进程无法及时释放锁,从而影响其他请求的获取锁速度。
- 原子性:释放锁的操作需要是原子的,确保在释放锁的过程中不会出现并发问题。
3. 锁的粒度
- 粒度:锁的粒度越小,系统的并发处理能力越强。例如,如果锁粒度是商品库存,那么同一商品的不同规格或颜色可能需要不同的锁,这样可以提高系统的并发处理能力。
4. 锁的持有时间
- 时间:锁的持有时间越短,系统的并发处理能力越强。如果锁的持有时间过长,会导致大量请求等待锁,从而影响系统的响应时间和吞吐量。
- 自动续期:为了避免死锁和长时间持有锁的问题,一些分布式锁实现提供了自动续期功能。这可以在一定程度上提高系统的并发处理能力,但也会增加系统的复杂性。
5. 可扩展性
- 扩展能力:分布式锁的实现需要具备良好的可扩展性,能够随着系统规模的扩展而扩展。例如,在分布式系统中增加新的节点时,分布式锁应该能够自动适应新的节点并保持良好的性能。
6. 可靠性
- 稳定性:分布式锁需要具备高可靠性,确保在分布式系统中不会出现死锁、活锁等问题。这要求分布式锁的实现具备完善的错误处理机制和容错能力。
- 一致性:在分布式系统中,多个节点可能同时访问共享资源。分布式锁需要确保在任意时刻只有一个节点能够获取锁并执行临界操作,以保证数据的一致性。
7. 资源消耗
- 内存和CPU占用:分布式锁的实现需要占用一定的内存和CPU资源。在高并发场景下,如果分布式锁的资源消耗过高,会影响系统的整体性能。
- 网络开销:在分布式系统中,多个节点之间可能通过网络进行通信。分布式锁的实现需要尽量减少网络开销,以提高系统的响应速度和吞吐量。
8. 兼容性
- 跨平台支持:分布式锁需要支持多种编程语言和框架,以便在不同的分布式系统中进行部署和应用。
- 与其他组件的集成:分布式锁需要能够与其他分布式组件(如消息队列、缓存等)进行集成,以实现更加复杂的分布式系统架构。
综上所述,分布式锁的性能主要体现在获取锁的速度、锁的释放速度、锁的粒度、锁的持有时间、可扩展性、可靠性、资源消耗以及兼容性等方面。在实际应用中,需要根据具体场景选择合适的分布式锁实现方式,并进行必要的性能优化以满足系统的需求。
总结
在京东双十一这样的高并发场景下,分布式锁的性能优化尤为重要。通过选择合适的分布式锁实现方式、减小锁的粒度、限制锁的持有时间等措施,可以显著提升系统的吞吐量和响应时间。Redis锁和RedLoc锁是两种常见的分布式锁实现方式,各有优缺点。Redis锁实现简单,但在高并发场景下可能存在性能瓶颈;RedLoc锁通过分段锁的策略提升了性能,但实现相对复杂。在实际应用中,需要根据具体场景选择合适的分布式锁实现方式,并进行必要的性能优化。
相关文章:
京东双十一高并发场景下的分布式锁性能优化
背景 在电商领域,尤其是像京东双十一这样的大促活动,系统需要处理极高的并发请求。这些请求往往涉及库存的查询和更新,如果处理不当,很容易出现库存超卖、数据不一致等问题。分布式锁作为一种有效的解决方案,能够在多…...
华为ICT题库-AI 人工智能部分
1178、以下哪个选项是华为的云端AI芯片?(云服务考点) (A)Inferentia (B)MLU100 (C)Cloud TPU (D)Ascend 910 答案:D 解析:华为的云端AI芯片被称为Ascend芯片系列,其中Ascend 910是其旗舰产品。Ascend 910…...
React Native 修改安卓应用图片和名称
在React Native(RN)项目中,修改安卓应用图标和名称通常涉及对Android原生代码的一些修改。以下是详细步骤: 修改应用图标 准备图标资源: 创建或获取你想要的图标,并确保它们符合Android的图标规范…...
普推知产:商标初审已下,商标申请通过如何高些!
近期下来一批商标注册的初步审公告通知书,一些客户对商标下证要求比较高的,普推知产商标老杨发现,要像下证高核心还是在于名称,名称起好备用的多,让商标专业人士经检索后层层过滤后提报,通过会好很多。 普推…...
HICP--2
在area 0的路由器只生成 area 0 的数据库,只在area 1 的一样。但是既在又在的生成两个 area的 LSDB 一、区域间三类LSA 在OSPF(Open Shortest Path First)协议中,区域间三类LSA(Link-State Advertisement)…...
sheng的学习笔记-AI基础-正确率/召回率/F1指标/ROC曲线
AI目录:sheng的学习笔记-AI目录-CSDN博客 分类准确度问题 假设有一个癌症预测系统,输入体检信息,可以判断是否有癌症。如果癌症产生的概率只有0.1%,那么系统预测所有人都是健康,即可达到99.9%的准确率。 但显然这样的…...
Linux -- 共享内存(2)
目录 命令 ipcs -m : 命令 ipcrm -m shmid: 共享内存的通信: 为什么共享内存更高效? 代码: ShmClient.cc: ShmServer.cc: 结果: 如何让共享内存实现同步? 代码&a…...
云函数实现发送邮件,以qq邮箱为例
云函数实现发送邮件,前端传参调用发送邮件即可。以qq邮箱为例。 1、开启qq邮箱的smtp服务并且生成授权码,操作界面如下图: 2、在腾讯云新建一个云函数代码如下: const nodemailer require("nodemailer");// 云函数入口函数 export…...
Kafka如何控制消费的位置?
大家好,我是锋哥。今天分享关于【Kafka如何控制消费的位置?】面试题?希望对大家有帮助; Kafka如何控制消费的位置? 1000道 互联网大厂Java工程师 精选面试题-Java资源分享网 在 Kafka 中,控制消费位置主要通过以下几个机制来实…...
python爬虫——Selenium的基本使用
目录 一、Selenium的介绍 二、环境准备 1.安装Selenium 2.安装WebDriver 三、元素定位 1.常用定位元素的方法 2. 通过指定方式定位元素 四、窗口操作 1.最大化浏览器窗口 2.设置浏览器窗口大小 3.切换窗口或标签页 切换回主窗口 4. 关闭窗口 关闭当前窗口 关闭所…...
【Linux】【xmake】安装 + C/C++常用项目配置
文章目录 0. 环境准备1. 子命令create - 快速创建项目build - 构建程序config - 配置编译需要的参数show - 查看当前工程基本信息update - 程序自更新 2. C/C 项目常用配置2.1 项目目标类型2.2 添加宏定义2.3 头文件路径和链接库配置2.4 设置语言标准2.5 设置编译优化2.6 添加源…...
Android 添加菜单开关控制Camera相机和第三方相机
本文主要通过SystemProperties系统属性和Settings.System存储数据库的状态进行判断,从而实现控制相机 /vendor/mediatek/proprietary/packages/apps/MtkSettings/res/values-zh-rCN/strings.xml <!--camera--> <string name="manager_camera_switch"&…...
【Java知识】使用jacoco实现代码覆盖率测试
文章目录 1. 添加JaCoCo插件到项目2. 配置Maven Surefire Plugin3. 执行测试并生成报告4. 查看覆盖率报告注意事项 要使用JaCoCo实现代码覆盖率测试,你需要遵循以下步骤: 1. 添加JaCoCo插件到项目 在Maven项目的pom.xml文件中添加JaCoCo插件。这允许你执…...
道路车辆功能安全 ISO 26262标准(9-2)—面向汽车安全完整性等级 (ASIL) 和安全的分析
写在前面 本系列文章主要讲解道路车辆功能安全ISO26262标准的相关知识,希望能帮助更多的同学认识和了解功能安全标准。 若有相关问题,欢迎评论沟通,共同进步。(*^▽^*) 1. 道路车辆功能安全ISO 26262标准 9. ISO 26262-9 面向汽车安全完整…...
hutool常用方法
1、树结构工具-TreeUtil 构建Tree示例 package com.sl.transport.common.util;import cn.hutool.core.bean.BeanUtil; import cn.hutool.core.collection.CollUtil; import cn.hutool.core.lang.tree.Tree; import cn.hutool.core.lang.tree.TreeNode; import cn.hutool.core…...
CloudSat数据产品数据下载与处理 (matlab)
CloudSat数据下载 这个数据我之前和CALIPSO弄混了,后来发现它们虽然是同一个火箭上去,但是数据产品却在不同的平台下,CloudSat的数据更加关注云的特性,包括云覆盖、云水当量、云分类数据。 数据网址在:CloudSat网址 …...
LDR6500 一拖三快充线的定义与特点
定义:LDR6500 一拖三快充线是一种具有 Type-C 接口的充电线,它的最大特点是可以同时连接三个设备进行快速充电。 特点: 高效充电:采用先进的快充技术,能够快速为设备充电,大大缩短充电时间。同时…...
Elasticsearch安装使用
ES 概述 Elasticsearch,简称为 ES,是一款非常强大的开源的高扩展的分布式全文检索引擎,可以帮助我们从海量数据中快速找到需要的内容,它可以近乎实时的存储、检索数据.还可以可以实现日志统计、分析、系统监控等功能. 官网:https://www.elast…...
计算机网络的主要知识点小结
计算机网络是指将多台计算机通过通信线路连接起来,实现资源共享和信息传递的系统。 一、计算机网络概述 1. 定义和功能 - 定义:计算机网络是将地理位置不同的具有独立功能的多台计算机及其外部设备,通过通信线路连接起来,在网络操…...
fastjson/jackson对getter,setter和constructor的区分
在复现完fastjson1.2.24-1.2.80和jackson的所有相关漏洞后,总结的一些规则 以下均指对json的反序列化过程 setter fastjson调用setter:遍历所有方法,找出所有满足setter要求的方法,再根据传入的json去反射调用 jackson调用set…...
基于算法竞赛的c++编程(28)结构体的进阶应用
结构体的嵌套与复杂数据组织 在C中,结构体可以嵌套使用,形成更复杂的数据结构。例如,可以通过嵌套结构体描述多层级数据关系: struct Address {string city;string street;int zipCode; };struct Employee {string name;int id;…...
设计模式和设计原则回顾
设计模式和设计原则回顾 23种设计模式是设计原则的完美体现,设计原则设计原则是设计模式的理论基石, 设计模式 在经典的设计模式分类中(如《设计模式:可复用面向对象软件的基础》一书中),总共有23种设计模式,分为三大类: 一、创建型模式(5种) 1. 单例模式(Sing…...
日语学习-日语知识点小记-构建基础-JLPT-N4阶段(33):にする
日语学习-日语知识点小记-构建基础-JLPT-N4阶段(33):にする 1、前言(1)情况说明(2)工程师的信仰2、知识点(1) にする1,接续:名词+にする2,接续:疑问词+にする3,(A)は(B)にする。(2)復習:(1)复习句子(2)ために & ように(3)そう(4)にする3、…...
【服务器压力测试】本地PC电脑作为服务器运行时出现卡顿和资源紧张(Windows/Linux)
要让本地PC电脑作为服务器运行时出现卡顿和资源紧张的情况,可以通过以下几种方式模拟或触发: 1. 增加CPU负载 运行大量计算密集型任务,例如: 使用多线程循环执行复杂计算(如数学运算、加密解密等)。运行图…...
微信小程序云开发平台MySQL的连接方式
注:微信小程序云开发平台指的是腾讯云开发 先给结论:微信小程序云开发平台的MySQL,无法通过获取数据库连接信息的方式进行连接,连接只能通过云开发的SDK连接,具体要参考官方文档: 为什么? 因为…...
九天毕昇深度学习平台 | 如何安装库?
pip install 库名 -i https://pypi.tuna.tsinghua.edu.cn/simple --user 举个例子: 报错 ModuleNotFoundError: No module named torch 那么我需要安装 torch pip install torch -i https://pypi.tuna.tsinghua.edu.cn/simple --user pip install 库名&#x…...
Fabric V2.5 通用溯源系统——增加图片上传与下载功能
fabric-trace项目在发布一年后,部署量已突破1000次,为支持更多场景,现新增支持图片信息上链,本文对图片上传、下载功能代码进行梳理,包含智能合约、后端、前端部分。 一、智能合约修改 为了增加图片信息上链溯源,需要对底层数据结构进行修改,在此对智能合约中的农产品数…...
AGain DB和倍数增益的关系
我在设置一款索尼CMOS芯片时,Again增益0db变化为6DB,画面的变化只有2倍DN的增益,比如10变为20。 这与dB和线性增益的关系以及传感器处理流程有关。以下是具体原因分析: 1. dB与线性增益的换算关系 6dB对应的理论线性增益应为&…...
[免费]微信小程序问卷调查系统(SpringBoot后端+Vue管理端)【论文+源码+SQL脚本】
大家好,我是java1234_小锋老师,看到一个不错的微信小程序问卷调查系统(SpringBoot后端Vue管理端)【论文源码SQL脚本】,分享下哈。 项目视频演示 【免费】微信小程序问卷调查系统(SpringBoot后端Vue管理端) Java毕业设计_哔哩哔哩_bilibili 项…...
LRU 缓存机制详解与实现(Java版) + 力扣解决
📌 LRU 缓存机制详解与实现(Java版) 一、📖 问题背景 在日常开发中,我们经常会使用 缓存(Cache) 来提升性能。但由于内存有限,缓存不可能无限增长,于是需要策略决定&am…...
