基于麻雀优化算法SSA的CEEMDAN-BiLSTM-Attention的预测模型

往期精彩内容:
时序预测:LSTM、ARIMA、Holt-Winters、SARIMA模型的分析与比较
全是干货 | 数据集、学习资料、建模资源分享!
EMD、EEMD、FEEMD、CEEMD、CEEMDAN的区别、原理和Python实现(一)EMD-CSDN博客
EMD、EEMD、FEEMD、CEEMD、CEEMDAN的区别、原理和Python实现(二)EEMD
EMD、EEMD、FEEMD、CEEMD、CEEMDAN的区别、原理和Python实现(三)FEEMD-CSDN博客
EMD、EEMD、FEEMD、CEEMD、CEEMDAN的区别、原理和Python实现(四)CEEMD-CSDN博客
EMD变体分解效果最好算法——CEEMDAN(五)-CSDN博客
拒绝信息泄露!VMD滚动分解 + Informer-BiLSTM并行预测模型-CSDN博客
风速预测(一)数据集介绍和预处理_风速数据在哪里下载-CSDN博客
风速预测(二)基于Pytorch的EMD-LSTM模型-CSDN博客
风速预测(三)EMD-LSTM-Attention模型-CSDN博客
风速预测(四)基于Pytorch的EMD-Transformer模型-CSDN博客
风速预测(五)基于Pytorch的EMD-CNN-LSTM模型-CSDN博客
风速预测(六)基于Pytorch的EMD-CNN-GRU并行模型-CSDN博客
单步预测-风速预测模型代码全家桶-CSDN博客
CEEMDAN +组合预测模型(BiLSTM-Attention + ARIMA)-CSDN博客
CEEMDAN +组合预测模型(Transformer - BiLSTM + ARIMA)-CSDN博客
CEEMDAN +组合预测模型(CNN-LSTM + ARIMA)-CSDN博客
CEEMDAN +组合预测模型(CNN-Transformer + ARIMA)-CSDN博客
多特征变量序列预测(一)——CNN-LSTM风速预测模型-CSDN博客
多特征变量序列预测(二)——CNN-LSTM-Attention风速预测模型-CSDN博客
多特征变量序列预测(三)——CNN-Transformer风速预测模型-CSDN博客
多特征变量序列预测(四) Transformer-BiLSTM风速预测模型-CSDN博客
多特征变量序列预测(五) CEEMDAN+CNN-LSTM风速预测模型-CSDN博客
多特征变量序列预测(六) CEEMDAN+CNN-Transformer风速预测模型-CSDN博客
前言
本文基于前期介绍的风速数据(文末附数据集),介绍一种综合应用完备集合经验模态分解CEEMDAN与基于麻雀优化算法的SSA-BiLSTM-Attention预测模型,以提高时间序列数据的预测性能。该方法的核心是使用CEEMDAN算法对时间序列进行分解,接着利用麻雀优化算法对BiLSTM-Attention模型进行优化,通过对分解后的数据进行建模,来实现精准预测。
风速数据集的详细介绍可以参考下文:
风速预测(一)数据集介绍和预处理_垂直风速气象数据源-CSDN博客
1 风速数据CEEMDAN分解与可视化
1.1 导入数据

1.2 CEEMDAN分解

根据分解结果看,CEEMDAN一共分解出11个分量,来作为SSA-BiLSTM-Attention模型的输入进行预测
2 数据集制作与预处理
划分数据集,按照8:2划分训练集和测试集

3 麻雀优化算法
3.1 麻雀优化算法介绍
麻雀优化算法(Sparrow Optimization Algorithm,简称SSA)是一种基于自然界麻雀行为特点的优化算法,它模拟了麻雀在觅食、迁徙和社交等行为中的优化策略。该算法在解决多种优化问题方面展现出了良好的性能。麻雀优化算法的基本思想是通过模拟麻雀的觅食行为,不断优化搜索空间中的解。算法的过程可以分为觅食行为、迁徙行为和社交行为三个阶段。
-  觅食行为(Foraging Behavior):麻雀在觅食时会选择距离较近且具有较高适应度的食物源。在算法中,解空间中的每个个体被看作是一个食物源,具有适应度评价值。麻雀通过选择适应度较高的个体来寻找更优的解。 
-  迁徙行为(Migration Behavior):当麻雀在一个食物源周围搜索一段时间后,如果没有找到更优的解,它们会选择离开当前食物源,前往其他食物源继续寻找。在算法中,个体之间的位置信息会发生变化,以模拟麻雀的迁徙行为。 
-  社交行为(Social Behavior):麻雀在觅食时会通过与其他麻雀的交流来获取更多的信息,从而提高自己的觅食效率。在算法中,个体之间通过交换信息来改善自身的解,并且更新解空间中的最优解。 
3.2 基于Python的麻雀优化算法实现

3.3 麻雀优化算法-超参数寻优过程
麻雀优化算法具有简单易实现、全局寻优能力和自适应性等特点,适用于解决组合优化问题。我们通过麻雀优化算法来进行BiLSTM-Attention模型的超参数寻优。

通过设置合适的种群规模和优化迭代次数,我们在给定的超参数范围内,搜索出最优的参数。
4 基于CEEMADN的 SSA-BiLSTM-Attention 模型预测
4.1 定义SSA-BiLSTM-Attention预测模型

注意:
-  输入维度为11, 代表CEEMDAN分解的11个分量 
-  输入形状为 torch.Size([64, 7, 11]) 
-  batch_size=64, 7代表序列长度(滑动窗口取值) 
4.2 设置参数,训练模型

50个epoch,MSE 为0.005526,SSA-BiLSTM-Attention预测效果良好,适当调整模型参数,还可以进一步提高模型预测表现。
注意调整参数:
-  可以修改麻雀优化算法的种群规模和优化迭代次数; 
-  调整BiLSTM层数和维度数的参数搜索范围,增加更多的 epoch (注意防止过拟合) 
-  可以改变滑动窗口长度(设置合适的窗口长度) 
保存训练结果和预测数据
4.3 模型评估
分量预测,结果可视化

由分量预测结果可见,11个分量在SSA-BiLSTM-Attention预测模型下拟合效果好,预测精度高。
模型整体评估:


5 代码、数据整理如下:

相关文章:
 
基于麻雀优化算法SSA的CEEMDAN-BiLSTM-Attention的预测模型
往期精彩内容: 时序预测:LSTM、ARIMA、Holt-Winters、SARIMA模型的分析与比较 全是干货 | 数据集、学习资料、建模资源分享! EMD、EEMD、FEEMD、CEEMD、CEEMDAN的区别、原理和Python实现(一)EMD-CSDN博客 EMD、EEM…...
 
Linux:指令再认识
文章目录 前言一、知识点1. Linux下一切皆文件,也就是说显示器也是一种文件2. 指令是什么?3. ll 与 ls -l4. 日志5. 管道6. 时间戳 二、基本指令1. man指令2. cp指令3. mv指令4. 查看文件1)cat/tac指令——看小文件2)more/less指令…...
PHP如何抛出和接收错误
在PHP中,抛出和接收错误通常涉及异常处理机制,以及错误和异常的处理函数。以下是如何在PHP中抛出和接收错误的详细指南: 抛出错误(异常) 在PHP中,你可以使用throw关键字来抛出一个异常。这通常在你检测到…...
 
计算机网络:网络层 —— IPv4 地址的应用规划
文章目录 IPv4地址的应用规划定长的子网掩码变长的子网掩码 IPv4地址的应用规划 IPv4地址的应用规划是指将给定的 IPv4地址块 (或分类网络)划分成若干个更小的地址块(或子网),并将这些地址块(或子网)分配给互联网中的不同网络,进而可以给各网络中的主机…...
Mongodb命令大全
Mongodb命令大全 一、数据库相关命令二、集合相关命令三、文档(数据)相关命令1、_id 字段说明2、查询2.1、 查询操作符2.2、内嵌文档查询2.3、数组文档查询2.4、去重查询2.5、查询排序 sort2.6、分页查询2.7、指定列投影查询返回2.8、查询统计个数 count 3、聚合查询3.1、查询用…...
 
宇视设备视频平台EasyCVR视频融合平台果园/鱼塘/养殖场/菜园有电没网视频监控方案
在那些有电无网的偏远地区,如果园、鱼塘、养殖场或菜园,视频监控的实现面临着独特的挑战。宇视设备视频平台EasyCVR提供了一种创新的解决方案,通过结合太阳能供电和4G摄像头技术,有效地解决了这些场景下的监控需求。 在有电没网的…...
面试题:ABCD四个线程,A线程最后执行
我觉得是一个很高频的面试题,ABCD四个线程,A线程要等到BCD线程执行完再执行,怎么做 因为我刚复习完AQS,所以立马想到了CountDownLatch,但是看面试官反应他最想听到的应该是join方法,所以面试后就总结了几种…...
 
代码随想录算法训练营第46期Day43
leetcode.322零钱兑换 class Solution { public: //无限个硬币->完全背包int coinChange(vector<int>& coins, int amount) {vector<int> dp(10010,INT_MAX);//dp代表的在某个数值下最小的硬币数,要求是最小的硬币数,所以初始值要尽可…...
前端处理API接口故障:多接口自动切换的实现方案
因为在开发APP,一个接口如果不通(被挂了)又不能改了重新打包让用户再下载软件更新,所以避免这种情况,跟后端讨论多备用接口地址自动切换的方案,自动切换到备用的接口地址,并保证后续所有的请求都…...
多租户架构的全景分析(是什么?基本概念、实现策略、资源管理和隔离、数据安全与隔离、性能优化、扩展性与升级、案例研究)
文章目录 1. 多租户的基本概念2. 多租户的实现策略2.1 独立数据库模式2.2 共享数据库-独立Schema模式2.3 共享数据库-共享Schema模式 3. 资源管理和隔离4. 数据安全与隔离5. 性能优化6. 扩展性与升级7. 案例研究总结 多租户架构在云计算和SaaS应用中越来越流行,因为…...
Git使用问题汇总附带解决方法(持续更新)
Git使用问题汇总附带解决方法 一 git pull 代码时报错: Auto packing the repository in background for optimum performance. See “git help gc“ 一 git pull 代码时报错: Auto packing the repository in background for optimum performance. See …...
 
Spring Boot驱动的植物健康监测革命
1系统概述 1.1 研究背景 随着计算机技术的发展以及计算机网络的逐渐普及,互联网成为人们查找信息的重要场所,二十一世纪是信息的时代,所以信息的管理显得特别重要。因此,使用计算机来管理植物健康系统的相关信息成为必然。开发合适…...
element 中 el-dialog 在不同的文件中使用
在实际中工作,我们经常需要使用 el-dialog 来做一个弹框的功能。最常见的就是在父组件中点击一个按纽,然后弹出一个框。而这个框就是子组件。同时,父子组件是分布在不同的文件中。 <!--父组件--> <template> <div> <…...
QT中采用QCustomPlot 实现将buffer中的数据绘制成折线图,并且图形随着数据更新而更新
QT中采用QCustomPlot 实现将buffer中的数据绘制成折线图,并且图形随着数据更新而更新 为了在 Qt 中将缓冲区的数据动态绘制成折线图,并随着数据的更新而实时更新,可以使用 QCustomPlot 或 Qt 自带的绘图功能,比如 QGraphicsView,或者在更简单的情况下使用 QPainter 在 QW…...
 
1688API商品详情接口如何获取
获取 1688API商品详情接口主要有以下步骤: 一、注册开发者账号: 访问 1688 开放平台,进行开发者账号注册。这是获取 API 接口使用权限的第一步,注册信息要确保真实准确。 二、了解接口规范和政策: 在 1688 开放平台…...
pytorch + d2l环境配置
文章目录 前言一、安装软件二、配置具体环境 前言 一直想写一篇 pytorch d2l的深度学习环境配置。但一直都不是很顺利,配置过很多次,都会遇到一些各种依赖项的兼容性问题。但这个是没有办法的,各种开源包都在不断维护过程中,版本…...
 
Go使用exec.Command() 执行脚本时出现:file or directory not found
使用 Go 提供的 exec.Command() 执行脚本时出现了未找到脚本的 bug,三个排查思路 : exec.Command(execName, args…) 脚本名字不允许相对路径 exec.Command(execName, args…) execName 只能有脚本名,不允许出现参数 如果你是使用 Windows …...
细节性知识(宏定义解析与宏的外部引用)
目录 一、问:#define N 50 中的N可以用来做运算比较吗? 二、宏定义怎么外部引用? 例子 总结 一、问:#define N 50 中的N可以用来做运算比较吗? 解析:在C语言中,#define N 50 是一个预处理指…...
 
面试中的JVM:结合经典书籍的深度解读
写在前面 🔥我把后端Java面试题做了一个汇总,有兴趣大家可以看看!这里👉 ⭐️在无数次的复习巩固中,我逐渐意识到一个问题:面对同样的面试题目,不同的资料来源往往给出了五花八门的解释&#…...
 
使用语音模块的开发智能家居产品(使用雷龙LSYT201B 语音模块)
在这篇博客中,我们将探讨如何使用 LSYT201B 语音模块 进行智能设备的语音交互开发。通过这个模块,我们可以实现智能设备的语音识别和控制功能,为用户带来更为便捷和现代的交互体验。 1. 语音模块介绍 LSYT201B 是一个基于“芯片算法”的语音…...
Java 语言特性(面试系列2)
一、SQL 基础 1. 复杂查询 (1)连接查询(JOIN) 内连接(INNER JOIN):返回两表匹配的记录。 SELECT e.name, d.dept_name FROM employees e INNER JOIN departments d ON e.dept_id d.dept_id; 左…...
 
docker详细操作--未完待续
docker介绍 docker官网: Docker:加速容器应用程序开发 harbor官网:Harbor - Harbor 中文 使用docker加速器: Docker镜像极速下载服务 - 毫秒镜像 是什么 Docker 是一种开源的容器化平台,用于将应用程序及其依赖项(如库、运行时环…...
 
UDP(Echoserver)
网络命令 Ping 命令 检测网络是否连通 使用方法: ping -c 次数 网址ping -c 3 www.baidu.comnetstat 命令 netstat 是一个用来查看网络状态的重要工具. 语法:netstat [选项] 功能:查看网络状态 常用选项: n 拒绝显示别名&#…...
 
STM32标准库-DMA直接存储器存取
文章目录 一、DMA1.1简介1.2存储器映像1.3DMA框图1.4DMA基本结构1.5DMA请求1.6数据宽度与对齐1.7数据转运DMA1.8ADC扫描模式DMA 二、数据转运DMA2.1接线图2.2代码2.3相关API 一、DMA 1.1简介 DMA(Direct Memory Access)直接存储器存取 DMA可以提供外设…...
在四层代理中还原真实客户端ngx_stream_realip_module
一、模块原理与价值 PROXY Protocol 回溯 第三方负载均衡(如 HAProxy、AWS NLB、阿里 SLB)发起上游连接时,将真实客户端 IP/Port 写入 PROXY Protocol v1/v2 头。Stream 层接收到头部后,ngx_stream_realip_module 从中提取原始信息…...
解决本地部署 SmolVLM2 大语言模型运行 flash-attn 报错
出现的问题 安装 flash-attn 会一直卡在 build 那一步或者运行报错 解决办法 是因为你安装的 flash-attn 版本没有对应上,所以报错,到 https://github.com/Dao-AILab/flash-attention/releases 下载对应版本,cu、torch、cp 的版本一定要对…...
 
mysql已经安装,但是通过rpm -q 没有找mysql相关的已安装包
文章目录 现象:mysql已经安装,但是通过rpm -q 没有找mysql相关的已安装包遇到 rpm 命令找不到已经安装的 MySQL 包时,可能是因为以下几个原因:1.MySQL 不是通过 RPM 包安装的2.RPM 数据库损坏3.使用了不同的包名或路径4.使用其他包…...
C++.OpenGL (14/64)多光源(Multiple Lights)
多光源(Multiple Lights) 多光源渲染技术概览 #mermaid-svg-3L5e5gGn76TNh7Lq {font-family:"trebuchet ms",verdana,arial,sans-serif;font-size:16px;fill:#333;}#mermaid-svg-3L5e5gGn76TNh7Lq .error-icon{fill:#552222;}#mermaid-svg-3L5e5gGn76TNh7Lq .erro…...
 
短视频矩阵系统文案创作功能开发实践,定制化开发
在短视频行业迅猛发展的当下,企业和个人创作者为了扩大影响力、提升传播效果,纷纷采用短视频矩阵运营策略,同时管理多个平台、多个账号的内容发布。然而,频繁的文案创作需求让运营者疲于应对,如何高效产出高质量文案成…...
 
视觉slam十四讲实践部分记录——ch2、ch3
ch2 一、使用g++编译.cpp为可执行文件并运行(P30) g++ helloSLAM.cpp ./a.out运行 二、使用cmake编译 mkdir build cd build cmake .. makeCMakeCache.txt 文件仍然指向旧的目录。这表明在源代码目录中可能还存在旧的 CMakeCache.txt 文件,或者在构建过程中仍然引用了旧的路…...
