Python条形图 | 指标(特征)重要性图的绘制
在数据科学和机器学习的工作流程中,特征选择是一个关键步骤。通过评估每个特征对模型预测能力的影响,我们可以选择最有意义的特征(指标),从而提高模型的性能并减少过拟合。本文将介绍如何使用 Python 的 Seaborn 和 Matplotlib 库绘制特征重要性图(即条形图),以帮助我们可视化特征的重要性。
准备工作
首先,我们需要安装必要的库。如果您还没有安装 Pandas、Matplotlib 和 Seaborn,可以使用以下命令进行安装:
pip install pandas matplotlib seaborn
数据准备
在本示例中,我们创建一个简单的字典,模拟特征及其重要性分数。然后,我们将使用 Pandas 将其转换为 Series,以便更方便地进行处理和可视化。在具体的实际例子应用中,可以通过代码直接读取 csv/xlsx 等格式的数据。
import pandas as pd# 定义特征及其重要性值
data_dict = {'Vasodilator_1': 0.005994,'HDL': 0.006587,'BNP': 0.016333,'Cr': 0.018373,'Statins_1': 0.020511,'Diabetes_1': 0.024206,'Antibiotics_1': 0.029286,'Cr_new_1': 0.029618,'CtnI': 0.033793,'Oliguria_1': 0.035396
}# 将字典转换为 Pandas Series
selected_features = pd.Series(data_dict)
绘制特征重要性图
接下来,我们将使用 Seaborn 和 Matplotlib 绘制柱状图,以展示特征的重要性。
import matplotlib.pyplot as plt
import seaborn as sns# 创建图形,设置图形大小
plt.figure(figsize=(10, 6))# 使用 Seaborn 绘制条形图
barplot = sns.barplot(x=selected_features.values, y=selected_features.index, palette='viridis')# 设置图表标题
plt.title('Feature Importance from Lasso Regression', fontsize=14)# 反转y轴,使得重要性最高的特征在顶部
plt.gca().invert_yaxis()# 设置x轴和y轴的标签
plt.xlabel('Feature Importance', fontsize=13)
plt.ylabel('Variable', fontsize=13)# 调整图像在画布中的位置,避免元素重叠
plt.tight_layout()# 隐藏图表的上边框和右边框
barplot.spines['top'].set_visible(False)
barplot.spines['right'].set_visible(False)# 在每个柱子上显示对应的数值
for p in barplot.patches:barplot.annotate(format(p.get_width(), '.3f'), # 格式化数值到小数点后3位(p.get_width() + 0.001, p.get_y()), # 设置注释位置ha='center', va='bottom', fontsize=10, color='black', # 设置对齐方式和字体xytext=(0, 7), # 纵向偏移textcoords='offset points' # 偏移单位为点)# 保存图像为 PDF 文件
plt.savefig('Feature_Importance.pdf')# 显示图像
plt.show()
代码解释
- 设置图形大小:使用
plt.figure()设置图形的宽度和高度。 - 绘制柱状图:使用
sns.barplot()绘制柱状图,其中 x 轴表示特征重要性,y 轴表示特征名称。 - 反转 y 轴:使用
invert_yaxis()使得重要性最高的特征在顶部。 - 添加标签和标题:设置 x 轴和 y 轴的标签以及图表标题。
- 隐藏边框:隐藏不必要的图表边框,使得图表更加美观。
- 标注每个柱子:在每个柱子上添加对应的数值,以便于查看特征的重要性。
- 保存和显示图像:将生成的图像保存为 PDF 文件,并显示出来。
特征图展示

相关文章:
Python条形图 | 指标(特征)重要性图的绘制
在数据科学和机器学习的工作流程中,特征选择是一个关键步骤。通过评估每个特征对模型预测能力的影响,我们可以选择最有意义的特征(指标),从而提高模型的性能并减少过拟合。本文将介绍如何使用 Python 的 Seaborn 和 Ma…...
危险物品图像分割系统:一键训练
危险物品图像分割系统源码&数据集分享 [yolov8-seg-GFPN&yolov8-seg-CSwinTransformer等50全套改进创新点发刊_一键训练教程_Web前端展示] 1.研究背景与意义 项目参考ILSVRC ImageNet Large Scale Visual Recognition Challenge 项目来源AAAI Global…...
城市景色视频素材下载好去处
在制作短视频、Vlog 或商业宣传片时,城市景色视频素材能为作品增添现代感与活力。繁华都市、流光溢彩的夜景、清晨街道等都是展现城市魅力的好素材。那么城市景色视频素材去哪里下载呢? 蛙学网 是专为短视频创作者打造的素材平台,城市景色素材…...
基于SSM美容院管理系统的设计
管理员账户功能包括:系统首页,个人中心,用户管理,套餐类型管理,美容预约管理,生日提醒管理,管理员管理,系统管理 员工账号功能包括:系统首页,个人中心&#…...
Threejs 实现3D 地图(04)3d 地图的柱状图和文字显示
3d 地图的数据展示 代码仓库: King/threejs-3d-map 核心代码: function createText(feature, level, font) {if (feature.properties.name) {const [x_XYZ, y_XYZ] handleProject(feature.properties.center)// 缺点:首次渲染很慢 无法使…...
Oracle 第2章:安装与配置Oracle
安装与配置Oracle数据库是一项复杂但有序的过程。以下是对Oracle数据库安装与配置的概述,包括系统需求与硬件推荐,以及详细的安装步骤。 系统需求与硬件推荐 系统需求 在安装Oracle数据库之前,需要确保目标系统满足Oracle官方规定的最低要…...
动态规划 —— 斐波那契数列模型-解码方法
1. 解码方法 题目链接: 91. 解码方法 - 力扣(LeetCode)https://leetcode.cn/problems/decode-ways/description/ 2. 题目解析 1. 对字母A - Z进行编码1-26 2. 11106可以解码为1-1-10-6或者11-10-6, 但是11-1-06不能解码 3. 0n不能解码 4. …...
PPT / Powerpoint中利用LaTeX输入公式
PPT / Powerpoint中利用LaTeX输入公式_ppt插入latex公式-CSDN博客文章浏览阅读2.8w次,点赞42次,收藏75次。新版的Word(Office 2016后?)是支持LaTeX公式输入的,但是Powerpoint并不支持。下面介绍如何利用。_…...
C++ 模板专题 - 类型擦除
一:概述 C 中的类型擦除(Type Erasure)是一种技术,允许你在不暴露具体类型信息的情况下,通过统一的接口处理不同的类型。这种技术常用于实现泛型编程,特别是在需要支持多种不同类型的情况下,如容…...
RuoYi-Vue项目 重点代码讲解
1. RuoYi-Vue项目 常规说明: ruoyi-admin:后台接口开发(主要存放控制层相关代码)ruoyi-common:通用工具ruoyi-framework:框架核心ruoyi-generator:代码生成(可以移除)r…...
pandas习题 024:用字典构造 DataFrame
编码题)用 Python 的字典构造一个 DataFrame,它有 a、b 两列,三行数据。其中 a 列值为 1、4、7,b 列值为 2、5、8,索引为 x、y、z。 即: ‘’’ a b x 1 2 y 4 5 z 7 8 ‘’’ import pandas as pddf = pd.DataFrame({a: [1, 4,...
如何在Node.js中执行解压缩文件操作
一、解压文件 1.安装依赖: 安装adm-zip依赖包:npm install adm-zip --save 安装iconv-lite依赖包:npm install iconv-lite --save 解压前的file文件夹结构: update-1.0.2.zip压缩包内容: 2.在depresssFile.js文件&…...
梦熊 CSP-S模拟赛 T3 youyou 的序列 II
原题链接 题目大意 给定一个长度为 n 的非负整数序列 a ,初始时所有数字均被标记为蓝色,youyou 和 yy 轮流对序列 a 进行操作,由 youyou 开始。 • 如果当前是 youyou 的回合,那么他可以至多选择连续的 c 1 个数…...
记录下docker部署gitlab-ce-17.5版本及客户端git拉取方式配置
服务端部署 # 提前拉取镜像 docker pull gitlab/gitlab-ce:17.5.0-ce.0docker run -d \ --name gitlab \ --hostname gitlab.test.cn \ -p 443:443 \ -p 88:80 \ -p 2222:22 \ --restartalways \ -v /data/gitlab/config:/etc/gitlab \ -v /data/gitlab/logs:/var/log/gitlab …...
opencv-platform实现人脸识别
和同事接触了下甲方,对方算是一个资源整合的自由人,手里有项目,然后认识些开发就聊下有什么事情可以做的,对方聊了下做人脸签到,或者说人脸打开。就这方面我做了下简单的了解。做了个java小demo。 我们常用的人脸识别的摄像头屏幕…...
leetcode 有重复字符串的排列组合
1.题目要求: 2.题目代码: class Solution { public://运用回溯vector<string> result;string s;void backtricking(string S,vector<bool>& used){if(s.size() S.size()){result.push_back(s);return;}for(int i 0;i < S.size();i){if(i >…...
【大数据学习 | kafka】kafka的组件架构
broker:每个kafka的机器节点都会运行一个进程,这个进程叫做broker,负责管理自身的topic和partition,以及数据的存储和处理,因为kafka是集群形式的,所以一个集群中会存在多个broker,但是kafka的整体又不是一…...
Python基于TensorFlow实现简单循环神经网络回归模型(SimpleRNN回归算法)项目实战
说明:这是一个机器学习实战项目(附带数据代码文档视频讲解),如需数据代码文档视频讲解可以直接到文章最后关注获取。 1.项目背景 Simple RNN是一种基础的循环神经网络,它能够处理序列数据,例如文本、时间序…...
torch.isclose
torch.isclose是 PyTorch 中的一个函数,用于判断两个张量中的对应元素是否接近相等。 其函数签名为:torch.isclose(input, other, rtol1e-05, atol1e-08, equal_nanFalse)。 参数说明: input 和 other:要进行比较的两个张量。r…...
Python记录-字典
定义 Python 中的字典(dictionary)是一种内置的数据结构,用于存储键值对(key-value pairs)。字典中的每个键(key)都是唯一的,并且与一个值(value)相关联。键…...
深入剖析AI大模型:大模型时代的 Prompt 工程全解析
今天聊的内容,我认为是AI开发里面非常重要的内容。它在AI开发里无处不在,当你对 AI 助手说 "用李白的风格写一首关于人工智能的诗",或者让翻译模型 "将这段合同翻译成商务日语" 时,输入的这句话就是 Prompt。…...
java 实现excel文件转pdf | 无水印 | 无限制
文章目录 目录 文章目录 前言 1.项目远程仓库配置 2.pom文件引入相关依赖 3.代码破解 二、Excel转PDF 1.代码实现 2.Aspose.License.xml 授权文件 总结 前言 java处理excel转pdf一直没找到什么好用的免费jar包工具,自己手写的难度,恐怕高级程序员花费一年的事件,也…...
【android bluetooth 框架分析 04】【bt-framework 层详解 1】【BluetoothProperties介绍】
1. BluetoothProperties介绍 libsysprop/srcs/android/sysprop/BluetoothProperties.sysprop BluetoothProperties.sysprop 是 Android AOSP 中的一种 系统属性定义文件(System Property Definition File),用于声明和管理 Bluetooth 模块相…...
【C++从零实现Json-Rpc框架】第六弹 —— 服务端模块划分
一、项目背景回顾 前五弹完成了Json-Rpc协议解析、请求处理、客户端调用等基础模块搭建。 本弹重点聚焦于服务端的模块划分与架构设计,提升代码结构的可维护性与扩展性。 二、服务端模块设计目标 高内聚低耦合:各模块职责清晰,便于独立开发…...
让回归模型不再被异常值“带跑偏“,MSE和Cauchy损失函数在噪声数据环境下的实战对比
在机器学习的回归分析中,损失函数的选择对模型性能具有决定性影响。均方误差(MSE)作为经典的损失函数,在处理干净数据时表现优异,但在面对包含异常值的噪声数据时,其对大误差的二次惩罚机制往往导致模型参数…...
算法岗面试经验分享-大模型篇
文章目录 A 基础语言模型A.1 TransformerA.2 Bert B 大语言模型结构B.1 GPTB.2 LLamaB.3 ChatGLMB.4 Qwen C 大语言模型微调C.1 Fine-tuningC.2 Adapter-tuningC.3 Prefix-tuningC.4 P-tuningC.5 LoRA A 基础语言模型 A.1 Transformer (1)资源 论文&a…...
保姆级教程:在无网络无显卡的Windows电脑的vscode本地部署deepseek
文章目录 1 前言2 部署流程2.1 准备工作2.2 Ollama2.2.1 使用有网络的电脑下载Ollama2.2.2 安装Ollama(有网络的电脑)2.2.3 安装Ollama(无网络的电脑)2.2.4 安装验证2.2.5 修改大模型安装位置2.2.6 下载Deepseek模型 2.3 将deepse…...
算法:模拟
1.替换所有的问号 1576. 替换所有的问号 - 力扣(LeetCode) 遍历字符串:通过外层循环逐一检查每个字符。遇到 ? 时处理: 内层循环遍历小写字母(a 到 z)。对每个字母检查是否满足: 与…...
uniapp 字符包含的相关方法
在uniapp中,如果你想检查一个字符串是否包含另一个子字符串,你可以使用JavaScript中的includes()方法或者indexOf()方法。这两种方法都可以达到目的,但它们在处理方式和返回值上有所不同。 使用includes()方法 includes()方法用于判断一个字…...
stm32wle5 lpuart DMA数据不接收
配置波特率9600时,需要使用外部低速晶振...
