当前位置: 首页 > news >正文

YOlO系列——yolo v3

文章目录

  • 一、算法原理
  • 二、网络结构
  • 三、正负样本匹配规则
  • 四、损失函数
  • 五、边框预测
  • 六、性能特点
  • 七、应用场景

YOLO-v3(You Only Look Once version 3)是一种先进的目标检测算法,属于YOLO系列算法的第三代版本。以下是对YOLO-v3的详细介绍:

一、算法原理

YOLO-v3算法是一种one-stage的目标检测算法,它将图片划分成若干个网格,然后基于anchor机制生成先验框,只用一步就生成检测框。这种方法大大提升了算法的预测速度。YOLO-v3采用了多尺度预测的策略,能够同时检测到不同大小的目标。

二、网络结构

YOLO-v3的网络结构大致可分为三个部分:Backbone、PANet和Yolo Head。

  • Backbone:YOLO-v3的backbone是Darknet-53,它采用了与ResNet相似的残差模块堆叠结构。Darknet-53一共有52个卷积层和1个全连接层,通过堆叠多个残差模块来提取图像特征。
  • PANet:PANet(Path Aggregation
    Network)是一种特征融合网络,它采用了自下而上、自上而下以及横向连接的方式,将不同尺度的特征图进行融合,从而提高了特征图的表达能力。
  • Yolo Head:Yolo
    Head是YOLO-v3的解码器部分,它采用了conv+bn+act模块和一个kernel_size=1x1的卷积分类层。通过1x1卷积代替全连接层进行分类,可以保留特征图上对应原图的空间结构信息,便于匹配到正样本时输出空间上对应的channel的值。

三、正负样本匹配规则

在YOLO-v3中,正负样本的匹配规则是:给每一个ground true box分配一个正样本,这个正样本是所有bbox中找一个与gt_box的重叠区域最大的一个预测框,也就是和该gt_box的IOU(Intersection over Union)最大的预测框。如果一个样本不是正样本,那么它既没有定位损失,也没有类别损失,只有置信度损失。

四、损失函数

YOLO-v3的损失函数包括类别损失、置信度损失和定位损失。其中,类别损失只考虑正样本,置信度损失考虑所有样本,定位损失也只考虑正样本。

五、边框预测

YOLO-v3通过预测tx、ty、tw、th这四个值来得到预测框的坐标。其中,tx、ty是目标中心点相对于该点所在网格左上角的偏移量,经过sigmoid归一化后得到值在[0,1]之间。tw、th是先验框的缩放因子,通过指数函数进行放大后再与先验框的宽和高相乘,得到预测框的宽和高。

六、性能特点

快速准确:YOLO-v3在保持高准确率的同时,具有较快的检测速度。
多尺度预测:通过多尺度融合,YOLO-v3能够检测到不同大小的目标。
端到端检测:YOLO-v3采用CNN对目标进行端到端的检测,无需额外的后处理步骤。

七、应用场景

YOLO-v3算法广泛应用于各种目标检测任务中,如自动驾驶、安防监控、人脸识别等领域。由于其快速准确的特点,YOLO-v3在实时检测任务中具有很高的应用价值。

综上所述,YOLO-v3是一种先进的目标检测算法,具有快速准确、多尺度预测和端到端检测等特点。它在各种应用场景中都表现出了优秀的性能。

相关文章:

YOlO系列——yolo v3

文章目录 一、算法原理二、网络结构三、正负样本匹配规则四、损失函数五、边框预测六、性能特点七、应用场景 YOLO-v3(You Only Look Once version 3)是一种先进的目标检测算法,属于YOLO系列算法的第三代版本。以下是对YOLO-v3的详细介绍&…...

基于Datawhale开源量化投资学习指南(11):LightGBM在量化选股中的优化与实战

1. 概述 在前几篇文章中,我们初步探讨了如何通过LightGBM模型进行量化选股,并进行了一些简单的特征工程和模型训练。在这一篇文章中,我们将进一步深入,通过优化超参数和实现交叉验证来提高模型的效果,并最终通过回测分…...

Python4

4. 更多控制流工具 除了刚介绍的 while 语句&#xff0c;Python 还用了一些别的。我们将在本章中遇到它们。 4.1. if 语句 if elif else if x<0: x 0 print(Negative changed to zero) elif x0: print( zero) else: print(More) 4.2. for 语句 Pyth…...

springboot系列--web相关知识探索六

一、前言 web相关知识探索五中研究了请求中所带的参数是如何映射到接口参数中的&#xff0c;也即请求参数如何与接口参数绑定。主要有四种、分别是注解方式、Servlet API方式、复杂参数、以及自定义对象参数。web相关知识探索五中主要研究自定义对象参数数据绑定底层原理。本次…...

FreeSWITCH 简单图形化界面30 - 使用MYODBC时可能遇到的错误

FreeSWITCH 简单图形化界面30 - 使用MYODBC时可能遇到的错误 测试环境1、 MYODBC 3.51.18 or higher2、分析和解决2.1 解决1&#xff0c;降级MySQL ODBC2.2 解决2&#xff0c;修改FreeSWITCH代码 测试环境 http://myfs.f3322.net:8020/ 用户名&#xff1a;admin&#xff0c;密…...

阿里云物联网的通信方式

阿里云物联网通信的两种方式&#xff0c;一个是物模型&#xff08;分为服务&#xff0c;事件&#xff0c;属性&#xff09;&#xff0c;一个是自定义topic&#xff08;要另外设置数据流转&#xff09; 1.使用产品内的功能定义&#xff0c;&#xff08;其实也就是Topic中定义好的…...

自由职业者的一天:作为小游戏开发者的真实工作日记

大家好&#xff0c;我是小蜗牛。 在这个快节奏的数字时代&#xff0c;自由职业者的生活往往充满了挑战与机遇。作为一名微信小游戏开发者&#xff0c;我的日常工作并不像人们想象中的那样充满光鲜亮丽的画面&#xff0c;而是由无数的编码、调试和创意碰撞组成的。今天&#xf…...

【RL Latest Tech】分层强化学习:Option-Critic架构算法

&#x1f4e2;本篇文章是博主强化学习RL领域学习时&#xff0c;用于个人学习、研究或者欣赏使用&#xff0c;并基于博主对相关等领域的一些理解而记录的学习摘录和笔记&#xff0c;若有不当和侵权之处&#xff0c;指出后将会立即改正&#xff0c;还望谅解。文章分类在&#x1f…...

分布式数据库

前言 分布式数据库系统&#xff08;‌DDBS&#xff09;包含分布式数据库管理系统&#xff08;‌DDBMS&#xff09;和分布式数据库&#xff08;DDB&#xff09;。在分布式数据库系统中&#xff0c;一个应用程序可以对数据库进行透明操作&#xff0c;数据库中的数据分别在不同的…...

MySQL(2)【库的操作】

阅读导航 引言一、创建数据库1. 基本语法2. 创建数据库案例&#x1f4cc;创建名为db1的数据库&#x1f4cc;创建一个使用utf8字符集的db2数据库&#x1f4cc;创建一个使用utf8字符集&#xff0c;并带校对规则的db3数据库 二、字符集和校验规则1. 查看系统默认字符集以及校验规则…...

python pip更换(切换)国内镜像源

国内镜像源列表(个人推荐清华大学的源) ​ 清华大学&#xff1a; https://pypi.tuna.tsinghua.edu.cn/simple阿里云&#xff1a; http://mirrors.aliyun.com/pypi/simple豆瓣&#xff1a; http://pypi.douban.com/simple中国科技大学&#xff1a; https://pypi.mirrors.ustc.e…...

阿里云镜像源无法访问?使用 DaoCloud 镜像源加速 Docker 下载(Linux 和 Windows 配置指南)

&#x1f680; 作者主页&#xff1a; 有来技术 &#x1f525; 开源项目&#xff1a; youlai-mall &#x1f343; vue3-element-admin &#x1f343; youlai-boot &#x1f343; vue-uniapp-template &#x1f33a; 仓库主页&#xff1a; GitCode&#x1f4ab; Gitee &#x1f…...

使用 BERT 和逻辑回归进行文本分类及示例验证

使用 BERT 和逻辑回归进行文本分类及示例验证 一、引言 在自然语言处理领域中&#xff0c;文本分类是一项至关重要的任务。本文将详细介绍如何结合 BERT 模型与逻辑回归算法来实现文本分类&#xff0c;并通过实际示例进行验证。 二、环境准备 为了运行本文中的代码&#xf…...

【skywalking 】监控 Spring Cloud Gateway 数据

使用Spring Cloud 开发&#xff0c;用Skywalking 监控服务&#xff0c;但是Skywalking 默认是不支持 Spring Cloud Gateway 网关服务的&#xff0c;需要手动将 Gateway 的插件添加到 Skywalking 启动依赖 jar 中。 skywalking相关版本信息 jdk&#xff1a;17skywalking&#x…...

SpringWeb

SpringWeb SpringWeb 概述 SpringWeb 是 spring 框架中的一个模块&#xff0c;基于 Servlet API 构建的 web 框架. springWeb 是 Spring 为 web 层开发提供的一整套完备的解决方案。 在 web 层框架历经 Strust1&#xff0c;WebWork&#xff0c;Strust2 等诸多产品的历代更…...

嵌入式刷题(day21)

MySQL和sqlite的区别 MySQL和SQLite是两种常见的关系型数据库管理系统(RDBMS),但它们在特性、使用场景和架构方面有显著的区别: 1. 架构 MySQL:是一个基于服务器的数据库系统,遵循客户端-服务器架构。MySQL服务器运行在主机上,客户端通过网络连接并发送查询。它可以并…...

OpenAI 下一代旗舰模型现身?奥尔特曼亲自辟谣“猎户座“传闻

在人工智能领域最受瞩目的ChatGPT即将迎来两周岁之际&#xff0c;一场关于OpenAI新旗舰模型的传闻再次引发业界热议。然而&#xff0c;这场喧嚣很快就被OpenAI掌门人奥尔特曼亲自澄清。 事件源于科技媒体The Verge的一则报道。据多位知情人士透露&#xff0c;OpenAI可能会在11…...

【C++】STL初识

【C】STL初识 文章目录 【C】STL初识前言一、STL基本概念二、STL六大组件简介三、STL三大组件四、初识STL总结 前言 本篇文章将讲到STL基本概念&#xff0c;STL六大组件简介&#xff0c;STL三大组件&#xff0c;初识STL。 一、STL基本概念 STL(Standard Template Library,标准…...

框架篇补充(东西多 需要重新看网课)

什么是AOP 面向切面编程 降低耦合 提高代码的复用 Spring的bean的生命周期 实例化bean 赋值 初始化bean 使用bean 销毁bean SpringMVC的执行流程 Springboot自动装配原理 实际上就是为了从spring.factories文件中 获取到对应的需要 进行自动装配的类 并生成相应的Bean…...

合约门合同全生命周期管理系统:企业合同管理的数字化转型之道

合约门合同全生命周期管理系统&#xff1a;企业合同管理的数字化转型之道 1. 引言 在现代企业中&#xff0c;合同管理已经不再是简单的文件存储和审批流程&#xff0c;而是企业合规性、风险管理和业务流程的关键环节之一。随着企业规模的扩大和合同数量的增加&#xff0c;传统…...

OkHttp 中实现断点续传 demo

在 OkHttp 中实现断点续传主要通过以下步骤完成&#xff0c;核心是利用 HTTP 协议的 Range 请求头指定下载范围&#xff1a; 实现原理 Range 请求头&#xff1a;向服务器请求文件的特定字节范围&#xff08;如 Range: bytes1024-&#xff09; 本地文件记录&#xff1a;保存已…...

3403. 从盒子中找出字典序最大的字符串 I

3403. 从盒子中找出字典序最大的字符串 I 题目链接&#xff1a;3403. 从盒子中找出字典序最大的字符串 I 代码如下&#xff1a; class Solution { public:string answerString(string word, int numFriends) {if (numFriends 1) {return word;}string res;for (int i 0;i &…...

QT: `long long` 类型转换为 `QString` 2025.6.5

在 Qt 中&#xff0c;将 long long 类型转换为 QString 可以通过以下两种常用方法实现&#xff1a; 方法 1&#xff1a;使用 QString::number() 直接调用 QString 的静态方法 number()&#xff0c;将数值转换为字符串&#xff1a; long long value 1234567890123456789LL; …...

如何在网页里填写 PDF 表格?

有时候&#xff0c;你可能希望用户能在你的网站上填写 PDF 表单。然而&#xff0c;这件事并不简单&#xff0c;因为 PDF 并不是一种原生的网页格式。虽然浏览器可以显示 PDF 文件&#xff0c;但原生并不支持编辑或填写它们。更糟的是&#xff0c;如果你想收集表单数据&#xff…...

蓝桥杯 冶炼金属

原题目链接 &#x1f527; 冶炼金属转换率推测题解 &#x1f4dc; 原题描述 小蓝有一个神奇的炉子用于将普通金属 O O O 冶炼成为一种特殊金属 X X X。这个炉子有一个属性叫转换率 V V V&#xff0c;是一个正整数&#xff0c;表示每 V V V 个普通金属 O O O 可以冶炼出 …...

视觉slam十四讲实践部分记录——ch2、ch3

ch2 一、使用g++编译.cpp为可执行文件并运行(P30) g++ helloSLAM.cpp ./a.out运行 二、使用cmake编译 mkdir build cd build cmake .. makeCMakeCache.txt 文件仍然指向旧的目录。这表明在源代码目录中可能还存在旧的 CMakeCache.txt 文件,或者在构建过程中仍然引用了旧的路…...

Go 并发编程基础:通道(Channel)的使用

在 Go 中&#xff0c;Channel 是 Goroutine 之间通信的核心机制。它提供了一个线程安全的通信方式&#xff0c;用于在多个 Goroutine 之间传递数据&#xff0c;从而实现高效的并发编程。 本章将介绍 Channel 的基本概念、用法、缓冲、关闭机制以及 select 的使用。 一、Channel…...

MySQL 部分重点知识篇

一、数据库对象 1. 主键 定义 &#xff1a;主键是用于唯一标识表中每一行记录的字段或字段组合。它具有唯一性和非空性特点。 作用 &#xff1a;确保数据的完整性&#xff0c;便于数据的查询和管理。 示例 &#xff1a;在学生信息表中&#xff0c;学号可以作为主键&#xff…...

Xela矩阵三轴触觉传感器的工作原理解析与应用场景

Xela矩阵三轴触觉传感器通过先进技术模拟人类触觉感知&#xff0c;帮助设备实现精确的力测量与位移监测。其核心功能基于磁性三维力测量与空间位移测量&#xff0c;能够捕捉多维触觉信息。该传感器的设计不仅提升了触觉感知的精度&#xff0c;还为机器人、医疗设备和制造业的智…...

深度剖析 DeepSeek 开源模型部署与应用:策略、权衡与未来走向

在人工智能技术呈指数级发展的当下&#xff0c;大模型已然成为推动各行业变革的核心驱动力。DeepSeek 开源模型以其卓越的性能和灵活的开源特性&#xff0c;吸引了众多企业与开发者的目光。如何高效且合理地部署与运用 DeepSeek 模型&#xff0c;成为释放其巨大潜力的关键所在&…...