同三维T80005JEHA-4K60 4K60超高清HDMI/AV解码器
1路HDMI+1路CVBS+1路3.5音频输出,HDMI支持4K60,支持1路4K60解码,1路高清转码

产品简介:
T80005JEHA-4K60是一款4K60超高清解码器,支持1路HDMI/CVBS解码输出,HDMI支持4K60,适用于各种音视频解决方案,兼容各种主流设备。支持主流
SRT/RTSP/RTMP/M3U8/UDP/ONVIF etc等等流传输协议.最高支持2160P60视频输出。使用嵌入式集成芯片解决方案,具有低成本、低功耗、高可靠性、易于使用、适合快速部署等音视频解决方案。可以用广泛适用于各种音视频广播、园区音视频传输广播、校园广播、互联网直播、视频传输、电视系统、数字标牌、医疗视频采集等等应用领域。

产品特点:
*HDMI/CVBS 视频输出
*HDMI最高支持2160p60输出
*最高支持2160p60 解码
*支持
SRT/RTSP/RTMP/M3U8/UDP/ONVIF etc
*私有低延时协议UTP
*支持隔行流解码
*支持叠加文本/图片/滚动字幕
*路转码(最高支持1080p)
*可定制

产品应用:
行业应用
● IPTV电视系统
● 视频有线(无线)传输系统
● 数字标牌
● 地铁PIS
● 机场 PIS
● 校园广播
● 视频直播/广播系统
规格参数:
| 视频 | |
| 视频输出 | 1xHDMI( 1.4),1xCVBS |
| 音频输出 | 1xHDMI,1xRCA Stereo |
| 输出规格 | 3840x2160P60,1920x1080@60P/50p,1920x1080@60i/50i/1280x720@60p/50p 720x576i/720x480i |
| 解码规格 | H.265/H.264 |
| 解码分辨率 | 3840x2160P30,1920x1080@60P/50p,1920x1080@60i/50i/1280x720@60p/50p 720x576i/720x480i |
| OSD | 文本/图片/滚动字幕/时间 |
| NTP时间服务器 | 支持 |
| 转码 | 1路1080p |
| 系统 | |
| 网络 | 1000M |
| 协议 | srt utp http RTSP RTMP HLS FLV UDP Multicast Unicast ONVIF |
| IPC支持 | Onvif 扫描添加 |
| 管理 | 网页管理/CGI命令 |
| 产品参数 | |
| 尺寸 (W× L× H) | 115(138)x95x30mm |
| 包装尺寸(WxLxH) | 150x150x50mm |
| 净重/毛重 | 0.20kg/0.5kg |
| 温度 | 0-45(work),-20-80(storage) |
| 电源 | 12V DC 1A |
| 功率 | <5w |
同三维T80005JEHA-4K60 4K60超高清HDMI/AV解码器详情介绍:高清HDMI解码器,高清SDI解码器,4K超清HDMI解码器,双路4K超高清解码器,四路4K超高清解码器
相关文章:
同三维T80005JEHA-4K60 4K60超高清HDMI/AV解码器
1路HDMI1路CVBS1路3.5音频输出,HDMI支持4K60,支持1路4K60解码,1路高清转码 产品简介: T80005JEHA-4K60是一款4K60超高清解码器,支持1路HDMI/CVBS解码输出,HDMI支持4K60,适用于各种音视频解决方…...
深信服秋季新品重磅发布:安全GPT4.0数据安全大模型与分布式存储EDS新版本520,助力数字化更简单、更安全
10月23日,深信服举办2024秋季新品发布会。发布会上,深信服正式推出了最新的创新成果:实现动静态数据分类分级和数据风险自动研判分析的安全GPT4.0、具备卓越可靠性和AI勒索防护能力的分布式存储EDS新版本520。通过这些新品和能力,…...
Flutter图片控件(七)
1、加载图片 import package:flutter/material.dart;void main() {runApp(const MaterialApp(home: MyHomePage(),)); }class MyHomePage extends StatelessWidget {const MyHomePage({super.key});overrideWidget build(BuildContext context) {return Scaffold(appBar: AppB…...
JavaEE初阶---文件IO总结
文章目录 1.文件初识2.java针对于文件的操作2.1文件系统的操作---file类2.2文件内容的操作---流对象的分类2.4字符流的操作》文本文件2.4.1异常的说明2.4.2第一种文件内容的读取方式2.4.3第二种读取方式2.4.4close的方法的介绍2.4.5close的使用优化操作2.4.6内容的写入 2.3字节…...
10.28Python_pandas_csv
三、读取CSV文件 CSV(Comma-Separated Values,逗号分隔值,有时也称为字符分隔值,因为分隔字符也可以不是逗号),其文件以纯文本形式存储表格数据(数字和文本); CSV 是一…...
数据处理与可视化:pandas 和 matplotlib 初体验(9/10)
数据处理与可视化:pandas 和 matplotlib 初体验(9/10) 介绍 在如今的数据驱动时代,掌握数据处理与可视化是每个开发者和数据科学家不可或缺的技能。Python 拥有强大的数据处理库 pandas 和数据可视化库 matplotlib,它…...
鸿蒙学习总结
鸿蒙(HarmonyOS),做为国产自主研发设计的第一个操作系统,从开放测试以来一直备受关注。其纯血鸿蒙版(HarmonyOS NEXT)也于进日发布。过去的一段时间里,我站在一个移动开发者的角度对HarmonyOS进…...
如何修改文件创建时间?六个超简单修改方法介绍
怎么修改文件创建时间?在信息安全与隐私保护的领域里,每一个细节都可能成为泄露敏感信息的突破口。文件的创建时间,这个看似微不足道的数据点,实则可能蕴含着重要的时间线索,对于不希望被外界窥探其内容或来源的个人及…...
【MySQL 保姆级教学】内置函数(9)
内置函数 1. 日期函数1.1 日期函数的种类1.2 示例1.3 日期的转换 2. 字符串函数2.1 种类2.2 示例 3. 数学函数3.1 种类3.2 向上取整和向下取整3.3 示例 4. 其他函数4.1 查询当前用户/数据库4.2 ifnull(val1,val2)4.3 md5()函数4.4 password()函数 1. 日期函数 1.1 日期函数的种…...
华为大咖说丨如何通过反馈机制来不断优化大模型应用?
本文分享自时习知 作者:袁泉(华为AI数据工程专家)全文约3015字,阅读约需8分钟 大模型应用正式投入使用后,存在一个较为普遍的情况:在利用“大模型提升业务运营效率”的过程中,业务部门和IT团队…...
上海亚商投顾:沪指缩量震荡 风电、传媒股集体走强
上海亚商投顾前言:无惧大盘涨跌,解密龙虎榜资金,跟踪一线游资和机构资金动向,识别短期热点和强势个股。 一.市场情绪 市场全天缩量震荡,三大指数集体收涨,北证50则跌超7%,超80只北交所个股跌逾…...
三磺酸-Cy3.5-羧酸在水相环境中表现良好,能够提高成像的清晰度和准确性
一、基本信息 中文名称:三磺酸-Cy3.5-羧酸,水溶性Cy3.5 羧基 英文名称:trisulfo-Cy3.5-carboxylic acid,trisulfo-Cy3.5-COOH,trisulfo-Cyanine3.5-COOH 分子式:C41H44N2NaO11S3- 分子量:85…...
国标GB28181视频平台EasyGBS国标GB28181软件实现无需插件的视频监控对讲和网页直播
在当今社会,视频监控已经成为公共安全、企业管理、智能城市建设等领域不可或缺的一部分。然而,由于不同厂家和平台之间的兼容性问题,视频监控系统的联网和整合面临巨大挑战。为了解决这个问题,国家制定了《公共安全视频监控联网系…...
mac nwjs程序签名公证(其他mac程序也一样适用)
为什么需要公证 mac os14.5之后的系统,如果不对应用进行公证,安装,打开,权限使用上都会存在问题,而且有些问题你强制开启(sudo spctl --master-disable)使用后可能会有另外的问题, …...
网络应用技术 实验一:路由器实现不同网络间通信(华为ensp)
目录 一、实验简介 二、实验目的 三、实验需求 四、实验拓扑 五、实验任务及要求 1、任务 1:完成网络部署 2、任务 2:设计全网IP 地址 3、任务 3:实现全网主机互通 六、实验步骤 1、在ensp中部署网络 2、配置各主机 IP地址、子网掩…...
使用 Qt GRPC 构建高效的 Trojan-Go 客户端:详细指南
使用 Qt GRPC 构建高效的 Trojan-Go 客户端:详细指南 初识 Qt 和 gRPC 什么是 Qt?什么是 gRPC? 项目结构概述创建 proto 文件定义 API 下载 api.proto 文件解析 proto 文件 1. package 与 option 语句2. 消息类型定义 TrafficSpeedUserUserSt…...
【mysql进阶】5-事务和锁
mysql 事务基础 1 什么是事务 事务是把⼀组SQL语句打包成为⼀个整体,在这组SQL的执⾏过程中,要么全部成功,要么全部失败,这组SQL语句可以是⼀条也可以是多条。再来看⼀下转账的例⼦,如图: 在这个例⼦中&a…...
指增和中性产品的申赎加减仓及资金调拨自动化伪代码思路
定义一些关键字代表的意义 STRUCT: 代表需要输入的格式化的信息IMPORT: 代表需要输入的外部信息, 这些信息通常是客观的SEARCH: 需要从某地比如数据库检索搜集信息SUM: 一种宏观的加和操作, 比如两个股票户ABAB,微观上实际还是有差异GROUP: …...
【论文分享】居住开放空间如何影响老年人的情感:使用可穿戴传感器的现场实验
本研究首次通过跟踪实时、高分辨率的环境暴露和情绪反应来研究和比较不同质量住宅社区中的居住开放空间(ROS)与老年人情绪之间关联;并采用混合方法,包括可穿戴传感器和问卷调查,收集了中国广州老年居民的客观和主观住宅…...
入门 | Prometheus+Grafana 普罗米修斯
#1024程序员节|征文# 一、prometheus介绍 1、监控系统组成 一个完整的监控系统需要包括如下功能:数据产生、数据采集、数据存储、数据处理、数据展示、分析、告警等。 (1)、数据来源 数据来源,也就是需要监控的数据…...
.Net框架,除了EF还有很多很多......
文章目录 1. 引言2. Dapper2.1 概述与设计原理2.2 核心功能与代码示例基本查询多映射查询存储过程调用 2.3 性能优化原理2.4 适用场景 3. NHibernate3.1 概述与架构设计3.2 映射配置示例Fluent映射XML映射 3.3 查询示例HQL查询Criteria APILINQ提供程序 3.4 高级特性3.5 适用场…...
vscode(仍待补充)
写于2025 6.9 主包将加入vscode这个更权威的圈子 vscode的基本使用 侧边栏 vscode还能连接ssh? debug时使用的launch文件 1.task.json {"tasks": [{"type": "cppbuild","label": "C/C: gcc.exe 生成活动文件"…...
使用分级同态加密防御梯度泄漏
抽象 联邦学习 (FL) 支持跨分布式客户端进行协作模型训练,而无需共享原始数据,这使其成为在互联和自动驾驶汽车 (CAV) 等领域保护隐私的机器学习的一种很有前途的方法。然而,最近的研究表明&…...
蓝桥杯 2024 15届国赛 A组 儿童节快乐
P10576 [蓝桥杯 2024 国 A] 儿童节快乐 题目描述 五彩斑斓的气球在蓝天下悠然飘荡,轻快的音乐在耳边持续回荡,小朋友们手牵着手一同畅快欢笑。在这样一片安乐祥和的氛围下,六一来了。 今天是六一儿童节,小蓝老师为了让大家在节…...
定时器任务——若依源码分析
分析util包下面的工具类schedule utils: ScheduleUtils 是若依中用于与 Quartz 框架交互的工具类,封装了定时任务的 创建、更新、暂停、删除等核心逻辑。 createScheduleJob createScheduleJob 用于将任务注册到 Quartz,先构建任务的 JobD…...
linux arm系统烧录
1、打开瑞芯微程序 2、按住linux arm 的 recover按键 插入电源 3、当瑞芯微检测到有设备 4、松开recover按键 5、选择升级固件 6、点击固件选择本地刷机的linux arm 镜像 7、点击升级 (忘了有没有这步了 估计有) 刷机程序 和 镜像 就不提供了。要刷的时…...
cf2117E
原题链接:https://codeforces.com/contest/2117/problem/E 题目背景: 给定两个数组a,b,可以执行多次以下操作:选择 i (1 < i < n - 1),并设置 或,也可以在执行上述操作前执行一次删除任意 和 。求…...
基于数字孪生的水厂可视化平台建设:架构与实践
分享大纲: 1、数字孪生水厂可视化平台建设背景 2、数字孪生水厂可视化平台建设架构 3、数字孪生水厂可视化平台建设成效 近几年,数字孪生水厂的建设开展的如火如荼。作为提升水厂管理效率、优化资源的调度手段,基于数字孪生的水厂可视化平台的…...
css3笔记 (1) 自用
outline: none 用于移除元素获得焦点时默认的轮廓线 broder:0 用于移除边框 font-size:0 用于设置字体不显示 list-style: none 消除<li> 标签默认样式 margin: xx auto 版心居中 width:100% 通栏 vertical-align 作用于行内元素 / 表格单元格ÿ…...
10-Oracle 23 ai Vector Search 概述和参数
一、Oracle AI Vector Search 概述 企业和个人都在尝试各种AI,使用客户端或是内部自己搭建集成大模型的终端,加速与大型语言模型(LLM)的结合,同时使用检索增强生成(Retrieval Augmented Generation &#…...
