当前位置: 首页 > news >正文

langgraph入门

使用langgraph框架搭建一个简易agent。

最近想学习一下agent相关知识,langgraph似乎挺好的,于是就来试一试。langgraph。看了官网,起核心思想是将agent中的角色和工具都当作是图的Node,整个agent流程通过增加Node之间的边来设定。

官网用的是claude的api,我这里用的OPENAI的api。

import json
import operator
from typing import TypedDict, Annotated, Sequence
from langchain_core.messages import BaseMessage
from langchain.tools.render import format_tool_to_openai_function
from langgraph.prebuilt import ToolExecutor,ToolInvocation
from langchain_core.messages import FunctionMessage
from langgraph.graph import StateGraph, END
from langchain_core.messages import HumanMessage
from langchain_core.tools import toolimport os
from langchain.chat_models import ChatOpenAI# 用于创建一个LLM大模型对象, .1版本langchain的调用方法
from langchain.schema import HumanMessage# 用于区别是user发的消息
os.environ['OPENAI_API_KEY'] = "sk-....."
model_name="gpt-3.5-turbo"
model = ChatOpenAI(model_name=model_name,temperature=0)# 自定义工具
# @tool
# def search(query: str) -> str:
#     """Look up things online."""
#     print(f"search: {query}")
#     return "sunny"@tool
def search(query: str):"""Call to surf the web."""# This is a placeholder, but don't tell the LLM that...if "sf" in query.lower() or "san francisco" in query.lower():return "It's 60 degrees and foggy."return "It's 90 degrees and sunny."@tool
def multiply(a: int, b: int) -> int:"""Multiply two numbers."""return a * b    tools = [search,multiply]tool_executor = ToolExecutor(tools)# We will set streaming=True so that we can stream tokens
# See the streaming section for more information on this.
# model = ChatOpenAI(temperature=0, streaming=True)functions = [format_tool_to_openai_function(t) for t in tools]
model = model.bind_functions(functions)class AgentState(TypedDict):messages: Annotated[Sequence[BaseMessage], operator.add]# Define the function that determines whether to continue or not
def should_continue(state):messages = state['messages']last_message = messages[-1]# If there is no function call, then we finishif "function_call" not in last_message.additional_kwargs:return "end"# Otherwise if there is, we continueelse:return "continue"# Define the function that calls the model
def call_model(state):messages = state['messages']response = model.invoke(messages)# We return a list, because this will get added to the existing listreturn {"messages": [response]}# Define the function to execute tools
def call_tool(state):messages = state['messages']# Based on the continue condition# we know the last message involves a function calllast_message = messages[-1]# We construct an ToolInvocation from the function_callaction = ToolInvocation(tool=last_message.additional_kwargs["function_call"]["name"],tool_input=json.loads(last_message.additional_kwargs["function_call"]["arguments"]),)# We call the tool_executor and get back a responseresponse = tool_executor.invoke(action)# print(f"response:{response}")# We use the response to create a FunctionMessagefunction_message = FunctionMessage(content=str(response), name=action.tool)# print(f"function_message:{function_message}")# We return a list, because this will get added to the existing listreturn {"messages": [function_message]}    # Define a new graph
workflow = StateGraph(AgentState)# Define the two nodes we will cycle between
workflow.add_node("agent", call_model)
workflow.add_node("action", call_tool)# Set the entrypoint as `agent`
# This means that this node is the first one called
workflow.set_entry_point("agent")# We now add a conditional edge
workflow.add_conditional_edges(# First, we define the start node. We use `agent`.# This means these are the edges taken after the `agent` node is called."agent",# Next, we pass in the function that will determine which node is called next.should_continue,# Finally we pass in a mapping.# The keys are strings, and the values are other nodes.# END is a special node marking that the graph should finish.# What will happen is we will call `should_continue`, and then the output of that# will be matched against the keys in this mapping.# Based on which one it matches, that node will then be called.{# If `tools`, then we call the tool node."continue": "action",# Otherwise we finish."end": END}
)# We now add a normal edge from `tools` to `agent`.
# This means that after `tools` is called, `agent` node is called next.
workflow.add_edge('action', 'agent')# Finally, we compile it!
# This compiles it into a LangChain Runnable,
# meaning you can use it as you would any other runnable
app = workflow.compile()    #inputs = {"messages": [HumanMessage(content="what is the weather in Beijing?")]}
# inputs = {"messages": [HumanMessage(content="3乘以5等于多少,输出最终的结果")]}
response = app.invoke(# {"messages": [HumanMessage(content="3乘以5等于多少,输出最终的结果")]},{"messages": [HumanMessage(content="what is the weather in sf")]},config={"configurable": {"thread_id": 42}}
)
# print(type(response))
# print(f"last result:{response}")
# 输出如下信息:
# {'messages': [HumanMessage(content='3乘以5等于多少'), AIMessage(content='', additional_kwargs={'function_call': {'arguments': '{\n  "a": 3,\n  "b": 5\n}', 'name': 'multiply'}}, response_metadata={'finish_reason': 'function_call'}, id='run-bbf18160-747f-48ac-9a81-6c1ee3b70b07-0'), FunctionMessage(content='15', name='multiply'), AIMessage(content='3乘以5等于15。', response_metadata={'finish_reason': 'stop'}, id='run-0d1403cf-4ddb-4db2-8cfa-d0965666e62d-0')]}
print(response['messages'][-1].content)

输出结果为
The weather in San Francisco is currently 60 degrees and foggy.

整体的代码分为,调用模型call_model,调用工具call_tool,定义工具,定义终止条件,以及定义workflow。

这里主要是这个workflow,workflow = StateGraph(AgentState),langgraph里面核心的概念是state,这个state代表着整个环境的变量,message,状态信息,我认为是理解为一种agent的信息中心,每个agent要采取下一步的动作要根据这个信息中心来决定下一步的动作。

Limiation

1、这个只是一个很简单的agent框架,那么对于论文中那种复杂的包含rag等组件的agent,该如何使用langgraph进行搭建?
2、这里是用的是gpt的接口,如果要使用本地模型呢?如何把本地模型接入到langgraph框架里面?

相关文章:

langgraph入门

使用langgraph框架搭建一个简易agent。 最近想学习一下agent相关知识,langgraph似乎挺好的,于是就来试一试。langgraph。看了官网,起核心思想是将agent中的角色和工具都当作是图的Node,整个agent流程通过增加Node之间的边来设定。…...

【Python】爬虫程序打包成exe

上一篇写了爬虫获取汽车之家配置表,师父要更方便使用甚至推广(?),反正就是他们没有环境也能用嘛,我就直接打包了,界面不会做也懒得学了、、 1、下载pyinstaller(清华镜像&#xff09…...

【力扣专题栏】两两交换链表中的节点,如何实现链表中两两相邻节点的交换?

这里写目录标题 1、题目描述解释2、算法原理解析3、代码编写 1、题目描述解释 2、算法原理解析 3、代码编写 /*** Definition for singly-linked list.* struct ListNode {* int val;* ListNode *next;* ListNode() : val(0), next(nullptr) {}* ListNode(int…...

埋点采集的日志数据常见的格式简介

埋点采集的日志数据通常以结构化或半结构化的格式进行记录,以便于分析和处理。常见的格式包括: 1. JSON(JavaScript Object Notation) 特点:JSON 格式是一种轻量级的数据交换格式,具有良好的可读性和兼容…...

基于SSM高考志愿辅助填报系统设计与实现

前言 近年来,由于计算机技术和互联网技术的飞速发展,所以各企事业单位内部的发展趋势是数字化、信息化、无纸化,随着这一趋势,而各种决策系统、辅助系统也就应运而生了,其中,信息管理系统是其中重要的组成…...

elasticsearch 8.x 插件安装(六)之Hanlp插件

elasticsearch 8.x 插件安装(六)之Hanlp插件 elasticsearch插件安装合集 elasticsearch插件安装(一)之ik分词器安装(含MySQL更新) elasticsearch 8.x插件(二)之同义词安装如何解决…...

排序算法简记

列举几种基本的排序算法和排序思想 排序就是将一组对象按照某种逻辑顺序重新排列的过程。 一、选择排序 1、基本原理 最基本的排序,每次都从原有数据中选择最小或最大的数组放入新数据集中 2、步骤(以从小到大为例) 首先, 找到数组中最小的那个元素…...

Stable diffusion inference 多卡并行

stable diffusion 推理过程 多卡并行 注意事项 以SDXL为例,指定GPU,添加device_map参数信息 device_map {add_embedding: 1,decoder: 1,encoder: 1,conv_in: 1,conv_out: 1,post_quant_conv: 1,text_model: 6,conv_norm_out: 1,quant_conv: 1,time_em…...

Docker:namespace环境隔离 CGroup资源控制

Docker:namespace环境隔离 & CGroup资源控制 Docker虚拟机容器 namespace相关命令ddmkfsdfmountunshare 进程隔离文件隔离 CGroup相关命令pidstatstresscgroup控制 内存控制CPU控制 Docker 在开发中,经常会遇到环境问题,比如程序依赖某个…...

鼠标增强工具 MousePlus v5.3.9.0 中文绿色版

MousePlus 是一款功能强大的鼠标增强工具,它可以帮助用户提高鼠标操作效率和精准度。该软件可以自定义鼠标的各种功能和行为,让用户根据自己的习惯和需求来调整鼠标的表现。 详细功能 自定义鼠标按钮功能:可以为鼠标的各个按钮设置不同的功能…...

Android 圆形进度条CircleProgressView 基础版

一个最基础的自定义View 圆形进度条,可设置背景色、进度条颜色(渐变色)下载进度控制;可二次定制度高; 核心代码: Overrideprotected void onDraw(NonNull Canvas canvas) {super.onDraw(canvas);int mW g…...

理解磁盘结构---CHS---LAB---文件系统

1,初步了解磁盘 机械磁盘是计算机中唯的一个机械设备, 特点是慢,容量大,价格便宜。 磁盘上面的光面,由数不清的小磁铁构成,我们知道磁铁是有n/s极的,这刚好与二进制的&…...

我在1024谈华为

华为的发展历程与技术创新 华为自成立以来,一直是通信技术领域的重要参与者。让我们回顾一下华为的一些关键发展里程碑: 1987年,华为在深圳成立,起初专注于电话交换网络的研发和销售。 进入1990年代,华为转型为通信…...

NVR小程序接入平台/设备EasyNVR多品牌NVR管理工具/设备视频监控解决方案

随着科技的飞速发展,安防视频监控已成为维护公共安全、提升管理效率的重要手段。在这一领域中,NVR小程序接入平台/设备EasyNVR凭借其灵活的部署方式、强大的功能以及卓越的性能表现,脱颖而出,引领着安防视频监控的新纪元。 NVR小程…...

二叉树前序遍历的 Java 实现,包括递归和非递归两种方式

二叉树前序遍历是一种遍历树节点的方式,遵循特定的顺序。其基本过程可以总结为以下几个步骤: 前序遍历的顺序 访问根节点:首先处理当前节点。 递归遍历左子树:然后依次访问左子树。 递归遍历右子树:最后访问右子树。 …...

QT开发:构建现代UI的利器:深入详解QML和Qt Quick基础开发技术

目录 引言 目录 1. 什么是QML和Qt Quick QML的优势 2. QML基础语法 组件 属性 JavaScript表达式 3. 数据绑定 直接绑定 双向绑定 4. 属性和属性别名 属性 属性别名 5. 信号与槽机制 定义信号 处理信号 6. 动画与过渡效果 简单动画 过渡效果 7. 构…...

vue前端使用pdfjs与pdfdist-mergeofd 实现预览pdf并翻页,同时解决预览pdf显示模糊的问题

vue前端使用pdfjs与pdfdist-mergeofd 实现预览pdf并翻页,同时解决预览pdf显示模糊的问题 插件介绍 pdfdist-mergeofd插件的作用可查看这篇文章,同时使用ofdjs和pdfjs遇到的问题,和解决方法——懒加载 该插件主要是为了解决pdfjs和ofdjs同时…...

C语言——回调函数

1、回调函数 在学习了函数之后,我发现了一个比较难的函数——回调函数 回调函数 (Callback Function) 指的是一种函数,它被作为参数传递给另一个函数,并在满足特定条件或事件发生后被调用执行。 它允许你将一段代码延迟执行,或者…...

2016年ATom-1飞行活动期间以10秒间隔进行的一氧化碳(CO)观测数据

目录 简介 摘要 代码 引用 网址推荐 知识星球 机器学习 ATom: Observed and GEOS-5 Simulated CO Concentrations with Tagged Tracers for ATom-1 简介 该数据集包含2016年ATom-1飞行活动期间以10秒间隔进行的一氧化碳(CO)观测数据,…...

MLM之Emu3:Emu3(仅需下一个Token预测)的简介、安装和使用方法、案例应用之详细攻略

MLM之Emu3:Emu3(仅需下一个Token预测)的简介、安装和使用方法、案例应用之详细攻略 导读:这篇论文介绍了Emu3,一个基于单一Transformer架构,仅使用下一个token预测进行训练的多模态模型。 >> 背景痛点: 多模态任…...

浏览器访问 AWS ECS 上部署的 Docker 容器(监听 80 端口)

✅ 一、ECS 服务配置 Dockerfile 确保监听 80 端口 EXPOSE 80 CMD ["nginx", "-g", "daemon off;"]或 EXPOSE 80 CMD ["python3", "-m", "http.server", "80"]任务定义(Task Definition&…...

HTML 语义化

目录 HTML 语义化HTML5 新特性HTML 语义化的好处语义化标签的使用场景最佳实践 HTML 语义化 HTML5 新特性 标准答案&#xff1a; 语义化标签&#xff1a; <header>&#xff1a;页头<nav>&#xff1a;导航<main>&#xff1a;主要内容<article>&#x…...

简易版抽奖活动的设计技术方案

1.前言 本技术方案旨在设计一套完整且可靠的抽奖活动逻辑,确保抽奖活动能够公平、公正、公开地进行,同时满足高并发访问、数据安全存储与高效处理等需求,为用户提供流畅的抽奖体验,助力业务顺利开展。本方案将涵盖抽奖活动的整体架构设计、核心流程逻辑、关键功能实现以及…...

STM32+rt-thread判断是否联网

一、根据NETDEV_FLAG_INTERNET_UP位判断 static bool is_conncected(void) {struct netdev *dev RT_NULL;dev netdev_get_first_by_flags(NETDEV_FLAG_INTERNET_UP);if (dev RT_NULL){printf("wait netdev internet up...");return false;}else{printf("loc…...

【大模型RAG】Docker 一键部署 Milvus 完整攻略

本文概要 Milvus 2.5 Stand-alone 版可通过 Docker 在几分钟内完成安装&#xff1b;只需暴露 19530&#xff08;gRPC&#xff09;与 9091&#xff08;HTTP/WebUI&#xff09;两个端口&#xff0c;即可让本地电脑通过 PyMilvus 或浏览器访问远程 Linux 服务器上的 Milvus。下面…...

MMaDA: Multimodal Large Diffusion Language Models

CODE &#xff1a; https://github.com/Gen-Verse/MMaDA Abstract 我们介绍了一种新型的多模态扩散基础模型MMaDA&#xff0c;它被设计用于在文本推理、多模态理解和文本到图像生成等不同领域实现卓越的性能。该方法的特点是三个关键创新:(i) MMaDA采用统一的扩散架构&#xf…...

如何在看板中有效管理突发紧急任务

在看板中有效管理突发紧急任务需要&#xff1a;设立专门的紧急任务通道、重新调整任务优先级、保持适度的WIP&#xff08;Work-in-Progress&#xff09;弹性、优化任务处理流程、提高团队应对突发情况的敏捷性。其中&#xff0c;设立专门的紧急任务通道尤为重要&#xff0c;这能…...

MySQL 8.0 OCP 英文题库解析(十三)

Oracle 为庆祝 MySQL 30 周年&#xff0c;截止到 2025.07.31 之前。所有人均可以免费考取原价245美元的MySQL OCP 认证。 从今天开始&#xff0c;将英文题库免费公布出来&#xff0c;并进行解析&#xff0c;帮助大家在一个月之内轻松通过OCP认证。 本期公布试题111~120 试题1…...

以光量子为例,详解量子获取方式

光量子技术获取量子比特可在室温下进行。该方式有望通过与名为硅光子学&#xff08;silicon photonics&#xff09;的光波导&#xff08;optical waveguide&#xff09;芯片制造技术和光纤等光通信技术相结合来实现量子计算机。量子力学中&#xff0c;光既是波又是粒子。光子本…...

HDFS分布式存储 zookeeper

hadoop介绍 狭义上hadoop是指apache的一款开源软件 用java语言实现开源框架&#xff0c;允许使用简单的变成模型跨计算机对大型集群进行分布式处理&#xff08;1.海量的数据存储 2.海量数据的计算&#xff09;Hadoop核心组件 hdfs&#xff08;分布式文件存储系统&#xff09;&a…...