【数据结构和算法】三、动态规划原理讲解与实战演练
目录
1、什么是动态规划?
2、动态规划实战演练
2.1 力扣题之爬楼梯问题
(1)解题思路1:
(2)解题思路2:
(3)动态规划(DP):解题思路
(4)动态规划理论
2.2 力扣题之海盗船长
(1)解题思路1:
(2)解题思路2:
(3)动态规划:解题思路3:
1、什么是动态规划?
动态规划(Dynamic Programming,DP)是把复杂问题分解为简单的子问题的求解方法。
动态规划的基本思想虽然简单,但分解的子问题很多都不一样。所以需要多做一些练习,接触并了解各种子问题及分解的思路,结合着不同数据结构,才能逐渐掌握DP的技巧。
所以,DP归纳起来就是多做练习,多思考,逐渐摸索题目的思考逻辑和优化思路。才能掌握使用DP解题的技巧。
从实际问题出发,分几步走,不断练习、迭代熟练:
- 暴力求解(枚举)
- 拆分子问题(DP)解法
- DP原理与题型相结合的分析
2、动态规划实战演练
2.1 力扣题之爬楼梯问题
以力扣著名的题“爬楼梯”为例子:
-
爬楼梯问题: . - 力扣(LeetCode)
假设你正在爬楼梯。需要
n阶你才能到达楼顶。每次你可以爬
1或2个台阶。你有多少种不同的方法可以爬到楼顶呢?示例 1:
输入:n = 2 输出:2 解释:有两种方法可以爬到楼顶。 1. 1 阶 + 1 阶 2. 2 阶示例 2:
输入:n = 3 输出:3 解释:有三种方法可以爬到楼顶。1. 1 阶 + 1 阶 + 1 阶 2. 1 阶 + 2 阶 3. 2 阶 + 1 阶提示:
1 <= n <= 45
(1)解题思路1:
暴力求解,排列所有1,2的组合。
寻找总和为n的,不同数字长度的组合。
from itertools import productdef climbStairs(n):pms = []for rep in range(1,n+1):permutations = list(product([1,2],repeat=rep))for pm in permutations:if sum(pm) == n:pms.append(pm)return len(pms)※ itertools是python为高效循环而创建迭代器的函数库 。product就是一个笛卡尔积(嵌套for循环)功能实现的函数。
- 时间复杂度O(n^3)
- 空间复杂度O(n)
(2)解题思路2:
问题寻找的是爬楼梯的方法数量,而不是具体统计每次走几阶。
所以问题关注的是每次爬1阶、爬2阶两种走法的组合上。
假设n=3,可以直接排列一下相应的组合
3 = 1 + 1 + 1 3 = 2 + 1 3 = 1 + 2简单直观,但我们要寻找的爬楼梯的规律。似乎还没有发现,继续增加n的数量~
当n=4:
4 = 1 + 1 + 1 + 1 4 = 2 + 1 + 1 4 = 1 + 2 + 14 = 1 + 1 + 2 4 = 2 + 2当n=5时:
5 = 1 + 1 + 1 + 1 + 1 5 = 2 + 1 + 1 + 1 5 = 1 + 2 + 1 + 15 = 1 + 1 + 2 + 1 5 = 2 + 2 + 15 = 1 + 1 + 1 + 2 5 = 2 + 1 + 2 5 = 1 + 2 + 2排列组合的方式,让我们似乎观察到了数值的规律。那就是n阶的走法,包含了n-1阶和n-2阶的走法。且 n阶的走法 = (n-1)阶走法 + (n-2)阶走法
简单的循环遍历就可以完成走法的累加:
n = 5 n1,n2 = 1,2 # n=1和n=2情况下的走法 res = 0 for i in range(3, n+1): # 从n=3时开始,直到nres = n1 + n2n1 = n2n2 = res print(res)测试下n=6,结果(n-1) + (n-2) = 8 + 5 = 13
还可以转换为递归写法
def climbStairs(n):if n <= 1:return 1return climbStairs(n-1) + climbStairs(n-2)至此,就是暴力算法的解题思路,所有可能的组合都做一遍。
(3)动态规划(DP):解题思路
依据上面算法特征分析的基础上,使用一个数组动态存储n的计算结果。
初始化数组,预先存入n-1和n-2的结果
def climbStairs(n):if n <= 1:return ndp = [i for i in range(n+1)]for i in range(3,n+1):dp[i] = dp[i-1] + dp[i-2]return dp[-1]上面代码中的dp就是我们提到的数组,其中
dp[i] = dp[i-1] + dp[i-2]。循环执行完成后,数组中最后一次计算的结果就是爬n阶楼梯的方法数。
- 时间复杂度:O(n)
- 空间复杂度:O(n)
对于空间复杂度,还可以进一步优化。由于我们只考虑n以及n-1、n-2的值。所以,中间的过程值可以丢弃。定义一个固定长度的数组,每次计算结果动态覆盖,如下:
def climbStairs(n):if n <= 1:return ndp = [0,1,2]for i in range(3,n+1):sum = dp[1] + dp[2]dp[1] = dp[2]dp[2] = sumreturn dp[2]- 时间复杂度:O(n)
- 空间复杂度:O(1)
(4)动态规划理论
学习动态规划算法,是从多种题解的思路中学习和发现。众多技术高手都给出了思路和技巧,但从实际出发,建议还是先埋头做题,积累了练习和分析思考后,再进行看高手的总结和归纳才会有“英雄所见略同”的共识。
在这之前,针对每道题目的分析,希望能思考如下的几个问题:
-
题目计算的目标是什么
走台阶问题的目标是求走法组合总数。
-
计算分解的子问题是什么
(n-1)阶走法 、(n-2)阶走法就是n阶走法的子问题 ****
-
转移方程是否是子问题的组合
转移方程上面已经写出来了 f(n) = f(n-1)+f(n-2) 。
-
能否优化
使用动态数组或字典来存储中间结果,可以有效的减少重复计算的复杂度。
当然,涉及到使用数组等容器来实现计算和优化时,还会接触到背包问题。
2.2 力扣题之海盗船长
问题:海盗船长:. - 力扣(LeetCode)
海盗船长:船长从坐标为(0,0)的位置出发,每次只能向x轴,y轴正方向走一步,求走到x,y点有几种走法?
示例 1:
输入:m = 3, n = 7
输出:28
示例 2:
输入:n = 3, n = 2
输出:3
解释:从左上角开始,总共有 3 条路径可以到达右下角。
1. 向右 -> 向下 -> 向下
2. 向下 -> 向下 -> 向右
3. 向下 -> 向右 -> 向下
示例 3:
输入:m = 7, n = 3
输出:28
示例 4:
输入:m = 3, n = 3
输出:6
提示:
1 <= m, n <= 100- 题目数据保证答案小于等于
2 * 10^9
(1)解题思路1:
从[0,0]到[x,y],是一个从矩阵左上角向右、向下探索的过程。
想要到达[x,y]位置,必然经过[x-1,y]或者[x,y-1]

所以,路径问题的分解就是求[x , y] = [x-1,y] + [x,y-1]
设 m,n = 3,7 暴力解法
results = {}def path_count(x, y):# results = {}if x == 1 or y == 1:results[(x,y)] = 1return 1results[(x,y)] = path_count(x-1,y) + path_count(x,y-1)return results[(x,y)]print(path_count(3,7))
时间复杂度:O(mn)
空间复杂度:O(n)
(2)解题思路2:
观察上面的方案,可以发现分解的路径实际上存在着大量重复的计算
print(results)

我们可以思考:走到results中(m,n)位置的上一步,一定是(m-1,n),(m,n-1),(m-1,n-1)的位置。

这其中(m-1,n-1)走过的路径中,就包含了(m-1,n)和(m,n-1)走过的路径。
以此类推,所有(m-2,n-2)的路径中,也就包含了(m-1,n-1), (m-1,n), (m,n-1) …… 如此嵌套。我们把计算结果存储在results里面,再次遇到相同的计算时,就直接把结果提取出来。
def path_count(x, y):if x == 1 or y == 1:results[(x,y)] = 1return 1# 查找重复节点,直接返回计算后结果if (x,y) in results:return results[(x,y)]results[(x,y)] = path_count(x-1,y) + path_count(x,y-1)return results[(x,y)]
(3)动态规划:解题思路3:
动态规划方式实现:
转移方程:f(x,y) = f(x-1,y) + f(x, y-1)
分两步实现:
-
计算“到达”每个位置所需要的步数(初始为1)
m,n = 3,7 path_counts = [[1] * n for j in range(m)] for i in range(m):for j in range(n):print(path_counts[i][j], end=' ')print() -
计算从起始位置,到达当前位置,步数的累加和
for x in range(1,m):for y in range(1,n):path_counts[x][y] = path_counts[x-1][y] + path_counts[x][y-1]print(path_counts[m-1][n-1])
完整代码:
def path_count(x, y):path_counts = [[1] * y for j in range(x)]for i in range(1,x):for j in range(1,y):path_counts[i][j] = path_counts[i-1][j] + path_counts[i][j-1]return path_counts[x-1][y-1]
相关文章:
【数据结构和算法】三、动态规划原理讲解与实战演练
目录 1、什么是动态规划? 2、动态规划实战演练 2.1 力扣题之爬楼梯问题 (1)解题思路1: (2)解题思路2: (3)动态规划(DP):解题思路 (4&#x…...
交叉编译 perl-5.40.0(riscv64)
交叉编译 perl-5.40.0(riscv64) https://arsv.github.io/perl-cross/usage.html https://github.com/arsv/perl-cross 借助 perl-cross 进行交叉编译 https://www.perl.org/get.html#unix_like 这里获取 perl-5.40.0 的源码 https://github.com/arsv/pe…...
Leetcode 搜索旋转排序数组
这段代码是用于解决LeetCode第33题“搜索旋转排序数组”的Java解法。以下是对该算法思想的中文解释: 算法思想 二分查找的基本思路: 由于数组是部分有序的(被旋转过),我们可以利用二分查找的思想,逐步缩小…...
Spring Task—定时任务
Spring Task 是 Spring 提供的一种轻量级定时任务调度功能,内置在 Spring 框架中。与 Quartz 等重量级调度框架相比,Spring Task 使用简便,无需额外依赖,适合在简单的调度任务场景中使用。通过注解配置方式,开发者可以…...
Spring Boot 应用开发概述
目录 Spring Boot 应用开发概述 Spring Boot 的核心特性 Spring Boot 的开发模式 Spring Boot 在企业应用开发中的优势 结论 Spring Boot 应用开发概述 Spring Boot 是由 Pivotal 团队开发的一个框架,基于 Spring 框架,旨在简化和加速基于 Spring …...
Chrome谷歌浏览器加载ActiveX控件之allWebDesktop控件介绍
背景 allWebDesktop控件是一款方便用户在线打开各类文档的OA办公控件。它设计比较轻巧,充分利用计算机程序资源打开文档,并将程序窗口嵌入到allWebDesktop控件区域内,从而实现浏览器内打开各类文档效果。 allWebPlugin中间件是一款为用户提供…...
GitHub Star 数量前 5 的开源应用程序生成器
欢迎来的 GitHub Star 数量排名系列文章的第 7 篇——最受欢迎的应用程序生成器。 之前我们已经详细探讨过:在 GitHub 上最受欢迎的——无代码工具、低代码项目、内部工具、CRUD项目、自部署项目和 Airtable 开源替代品。累计超过 50 个优质项目!&#…...
DBC文件当中新建CANFD等类型的报文
同学最近有添加CANFD报文的需求,需要用到CANFD类型报文的DBC文件,这下就难住我了,我之前用的DBC文件只有“CAN Standard”“CAN Extended”两种类型,压根没见过FD的。 后来他找到了项目之前的DBC,打开来看,…...
基于SpringBoot的房地产销售管理系统【附源码】
基于SpringBoot的房地产销售管理系统(源码L文说明文档) 目录 4 系统设计 4.1用户登录功能的详细实现 4.2管理员权限的功能实现 4.2.1客户信息管理功能的详细实现 4.2.2房产管理功能的详细实现 4.2.3预约看房功能的详细实现 4.2.4论…...
圆点虚线 Android
参考 https://blog.csdn.net/l_o_s/article/details/73550876 <com.xxx.wwww.weight.PointDividerViewandroid:layout_width"match_parent"android:layout_height"wrap_content"app:PDbackgroundColor"color/white"app:dotColor"color/…...
贵州鑫宏远农业-始终致力于推动现代农业的科技创新与发展
贵州鑫宏远农业科技有限公司,是一家在高科技农业领域深耕细作、锐意进取的企业。自成立以来,我们始终致力于推动现代农业的科技创新与发展,业务全面覆盖农业科学研发、组织培养生产、专业育苗培植、半成品及成品精细化养护、市场销售以及全方…...
程序员做销售,从代码到客户的逆袭之路
大家好,我是小悟。 在这个互联网风起云涌、技术迭代日新月异的时代,“跨界”已然成为一种新潮流。就好似那从天而降的大侠,一不小心就可能横跨了数个充满奇遇与挑战的领域。 想象一下,一个平日里只跟代码打交道的程序员…...
Flink CDC系列之:理解学习Kubernetes模式
Flink CDC系列之:理解学习Kubernetes模式 准备会话模式启动会话集群设置 Flink CDC提交 Flink CDC Job Kubernetes 是一种流行的容器编排系统,用于自动化计算机应用程序的部署、扩展和管理。Flink 的原生 Kubernetes 集成允许您直接在正在运行的 Kuberne…...
git合并相关操作详解
在使用Git进行分支管理时,合并(merge)操作是非常常见的。下面是Git合并相关的详细步骤和一些常见的场景及注意事项。 一、 基本合并操作 假设我们有两个分支:main 和 feature,希望将 feature 合并到 main 上。 切换到目标分支 首先需要切换到你想合并到的分支。例如,切…...
前端经典【面试题】持续更新HTML、CSS、JS、VUE、FLUTTER、性能优化等
HTML/CSS 面试题 什么是语义化 HTML? 说明:语义化 HTML 使用 HTML 标签来描述内容的含义,而不仅仅是其外观。使用语义化标签可以提高可读性和可访问性,并对 SEO 友好。示例: <header><h1>网站标题</h1&…...
【Linux知识】linux磁盘管理深入了解
文章目录 常见磁盘管理命令行磁盘分区NASNAS 磁盘挂载🔐 如何设置NAS设备的访问权限? Mkfs🧐 mkfs 命令支持哪些文件系统类型? Mount🔑 在Linux中,如何安全地卸载挂载的文件系统? 常见磁盘管理命…...
Qt Essential Classes
目录 QVariant QFlags QRandomGenerator 经典的Qt容器 QVector QList QMap QMultiMap QSet QHash QVariant 同std::variant是一样的,他是一个更加高级的union。在一个时间下,它虽然实际上只能是一种类型,但是一个variant可以hold住…...
小小猫棒onu替换家用光猫,薅运营商带宽羊毛,突破1000M
小小猫棒onu 一、总体步骤 1 记录原来光猫信息 主要包括SN,ploam密码,loid、loid密码、 mac、上网的vlan id等 一般gpon采用SN、ploam密码、SNploam密码三种中的一种认证方式 一般Epon采用loid(逻辑id)、mac、loid mac三种中…...
软件测试学习笔记丨Selenium学习笔记:css定位
本文转自测试人社区,原文链接:https://ceshiren.com/t/topic/22511 本文为霍格沃兹测试开发学社的学习经历分享,写出来分享给大家,希望有志同道合的小伙伴可以一起交流技术,一起进步~ 说明:本篇博客基于sel…...
python数据处理常用操作
数据处理是机器学习中非常重要的一步,以下是一些常用的操作和示例代码: 1. 数据清洗 处理缺失值: import pandas as pd# 读取数据 df pd.read_csv(data.csv)# 删除缺失值 df.dropna(inplaceTrue)# 用均值填充缺失值 df.fillna(df.mean(), i…...
国防科技大学计算机基础课程笔记02信息编码
1.机内码和国标码 国标码就是我们非常熟悉的这个GB2312,但是因为都是16进制,因此这个了16进制的数据既可以翻译成为这个机器码,也可以翻译成为这个国标码,所以这个时候很容易会出现这个歧义的情况; 因此,我们的这个国…...
vscode里如何用git
打开vs终端执行如下: 1 初始化 Git 仓库(如果尚未初始化) git init 2 添加文件到 Git 仓库 git add . 3 使用 git commit 命令来提交你的更改。确保在提交时加上一个有用的消息。 git commit -m "备注信息" 4 …...
云启出海,智联未来|阿里云网络「企业出海」系列客户沙龙上海站圆满落地
借阿里云中企出海大会的东风,以**「云启出海,智联未来|打造安全可靠的出海云网络引擎」为主题的阿里云企业出海客户沙龙云网络&安全专场于5.28日下午在上海顺利举办,现场吸引了来自携程、小红书、米哈游、哔哩哔哩、波克城市、…...
基础测试工具使用经验
背景 vtune,perf, nsight system等基础测试工具,都是用过的,但是没有记录,都逐渐忘了。所以写这篇博客总结记录一下,只要以后发现新的用法,就记得来编辑补充一下 perf 比较基础的用法: 先改这…...
Qt Http Server模块功能及架构
Qt Http Server 是 Qt 6.0 中引入的一个新模块,它提供了一个轻量级的 HTTP 服务器实现,主要用于构建基于 HTTP 的应用程序和服务。 功能介绍: 主要功能 HTTP服务器功能: 支持 HTTP/1.1 协议 简单的请求/响应处理模型 支持 GET…...
leetcodeSQL解题:3564. 季节性销售分析
leetcodeSQL解题:3564. 季节性销售分析 题目: 表:sales ---------------------- | Column Name | Type | ---------------------- | sale_id | int | | product_id | int | | sale_date | date | | quantity | int | | price | decimal | -…...
有限自动机到正规文法转换器v1.0
1 项目简介 这是一个功能强大的有限自动机(Finite Automaton, FA)到正规文法(Regular Grammar)转换器,它配备了一个直观且完整的图形用户界面,使用户能够轻松地进行操作和观察。该程序基于编译原理中的经典…...
2025季度云服务器排行榜
在全球云服务器市场,各厂商的排名和地位并非一成不变,而是由其独特的优势、战略布局和市场适应性共同决定的。以下是根据2025年市场趋势,对主要云服务器厂商在排行榜中占据重要位置的原因和优势进行深度分析: 一、全球“三巨头”…...
【MATLAB代码】基于最大相关熵准则(MCC)的三维鲁棒卡尔曼滤波算法(MCC-KF),附源代码|订阅专栏后可直接查看
文章所述的代码实现了基于最大相关熵准则(MCC)的三维鲁棒卡尔曼滤波算法(MCC-KF),针对传感器观测数据中存在的脉冲型异常噪声问题,通过非线性加权机制提升滤波器的抗干扰能力。代码通过对比传统KF与MCC-KF在含异常值场景下的表现,验证了后者在状态估计鲁棒性方面的显著优…...
Web后端基础(基础知识)
BS架构:Browser/Server,浏览器/服务器架构模式。客户端只需要浏览器,应用程序的逻辑和数据都存储在服务端。 优点:维护方便缺点:体验一般 CS架构:Client/Server,客户端/服务器架构模式。需要单独…...
