ETL、ELT和反向ETL都有什么不同?怎么选择?
数据处理是现代企业中不可或缺的一部分。随着数据量的不断增长,如何高效地处理、转换和加载数据变得尤为重要。本文将介绍三种常见的数据处理方式:ETL、ELT和反向ETL,帮助读者更好地理解和选择适合自己业务需求的方式。
一、ETL
定义:ETL,即Extract(提取)、Transform(转换)和Load(加载),是传统的数据处理方式。
流程:在ETL的过程中,数据首先从各种来源中提取出来,如数据库、文件或Web。然后,经过各种转换操作,数据被清洗、合并、过滤和转换成适合目标系统的格式。最后,经过加载操作,数据被导入到目标系统中。
优点:ETL过程对数据进行了彻底的清洗和转换,
缺点:在处理过程中需要占用大量的计算资源和存储空间。

二、ELT
定义:ELT,意为Extract(提取)、Load(加载)和Transform(转换),是近年来受欢迎的一种数据处理方式。
流程:ELT的主要思想是将数据原封不动地加载到目标系统中,然后在目标系统中进行转换操作。
好处:可以提高数据加载的效率,并减少了对计算资源的需求。由于目标系统通常具备强大的处理能力,可以更加灵活地进行数据转换和分析。
缺点:ELT在处理大规模数据时,可能会面临目标系统性能的限制。

三、反向ETL
1. 定义:反向ETL,是一种将数据从目标系统反向提取到源系统的数据处理方式,它与传统的ETL过程方向相反。传统ETL过程主要是从各种数据源中抽取数据,经过清洗、转换等操作后,将数据加载到数据仓库或数据湖中,用于支持数据分析和决策。而反向ETL则是从数据仓库或数据湖提取数据,将其转换到适合目标系统的格式,然后将载数据到这些目标系统中,目的是将分析和处理的数据直接反馈给业务运营系统。
这种方法主要应用于数据迁移、数据备份和数据同步等场景。将数据直接从数据仓库同步到营销、广告和运营团队使用的操作系统的过程。
2. 反向ETL对比传统的ETL:
传统的ETL(提取、转换、加载)管道自20世纪70年代以来一直存在,在大多数情况下,这些数据管道基本上保持不变。ETL,从外部来源中提取数据,将其转换,然后将其加载到数据仓库中。ETL被认为是为您的分析用例提供动力并将所有来源的不同数据整合到一个统一的平台上的主要流程。
反向 ETL的目标则大不相同,因为反向ETL的目的是利用仓库中的丰富见解,并将这些信息交到您的业务团队手中,以便他们能够推动推动推动成果。它强调的是从目标系统中提取数据,然后将其转换和加载到源系统中。
这种方式的优势是可以确保数据在不同系统之间的一致性,并提供灵活的数据处理和转换能力。
但是,反向ETLs也面临着数据传输和系统兼容性的挑战。
四、三者区别和应用场景
1. 流程顺序与重点:
1)ETL 的流程是先从多个数据源(如数据库、文件系统、日志文件等)抽取数据。这些数据源的格式、内容可能差异很大。例如,从一个关系型数据库中抽取结构化的销售数据,同时从服务器日志文件中抽取半结构化的用户访问记录。抽取后的数据接着进行转换操作,包括数据清洗(去除重复、错误或不完整的数据)、数据格式统一(如将日期格式统一、字符串编码转换)、数据集成(将来自不同数据源的数据根据关联规则进行合并)等复杂步骤。最后,将经过转换后的数据加载到目标数据存储系统,通常是数据仓库或者数据集市,用于支持数据分析和决策。
2) ELT 的流程首先也是从各种数据源抽取数据,和 ETL 类似。但是,抽取后的数据直接加载到目标数据存储系统(如数据湖),这个目标存储系统通常具有强大的存储和计算能力,能够处理大规模的原始数据。加载完成后,在目标存储系统内部进行数据转换操作。
例如,将数据加载到数据湖中后,利用数据湖的大数据处理工具(如 Spark)对数据进行清洗、格式转换和集成等操作。
3)反向 ETL 的方向与 ETL 相反。它是从数据仓库或者数据湖中提取已经经过分析处理的数据,这些数据可能是数据分析的结果(如客户细分数据、销售预测数据等)。提取后的数据进行转换,这个转换主要是为了使数据能够适应目标业务系统(如 CRM 系统、营销自动化系统等)的格式和要求。
例如,将数据仓库中的客户画像数据转换为营销系统能够识别和使用的格式。最后,将转换后的的数据加载到目标业务系统中,目的是将数据仓库中的分析成果应用到实际业务操作中,驱动业务决策和行动。
应用场景:
1)ETL 主要用于构建数据仓库和数据集市。它的目的是将分散的、杂乱的数据整合到一个集中的数据存储环境中,以便进行数据分析和商业智能应用。例如,企业希望通过分析销售数据、客户数据和市场数据来制定营销策略,ETL 可以将这些不同来源的数据整合到数据仓库中,为后续的数据分析(如数据挖掘、报表生成等)提供高质量的数据基础。
2)ELT 主要应用于大数据环境,特别是数据湖架构。它适合处理海量的、多样化的数据,这些数据可能包括结构化、半结构化和非结构化的数据。例如,在处理社交媒体数据、物联网数据等大数据源时,ELT 可以先将大量的原始数据快速加载到数据湖中,然后根据具体的分析需求,在数据湖中灵活地进行各种数据转换和分析操作,挖掘数据中的价值。
3)反向 ETL 主要用于将数据仓库中的数据驱动业务行动。它的应用场景包括将客户分析数据用于精准营销、将风险评估数据用于金融信贷审批等。例如,通过反向 ETL 将数据仓库中的用户行为分析数据加载到营销系统中,营销团队可以根据这些数据对不同的用户群体发送个性化的营销信息,从而提高营销的精准度和效果,实现数据从分析到业务操作的闭环。

了解更多数据仓库与数据集成关干货内容请关注>>>FineDataLink官网
免费试用、获取更多信息,点击了解更多>>>体验FDL功能
相关文章:
ETL、ELT和反向ETL都有什么不同?怎么选择?
数据处理是现代企业中不可或缺的一部分。随着数据量的不断增长,如何高效地处理、转换和加载数据变得尤为重要。本文将介绍三种常见的数据处理方式:ETL、ELT和反向ETL,帮助读者更好地理解和选择适合自己业务需求的方式。 一、ETL 定义&#…...
linux 中文实用型手册 基于RHEL(红帽系)
硬件系统 Updated by wangjing on 2024-10-28 at 02:36:57 in Tongzhou District, Beijing. 硬件信息 机器型号 dmidecode | grep "Product Name"CPU型号 cat /proc/cpuinfo |grep "model name" | uniqWWWCPU详情 lscpuCPU个数 cat /proc/cpuinfo |grep &q…...
Hash表算法
哈希表 理论知识(本文来自于代码随想录摘抄)什么是哈希常见的三种哈希结数组:set:map:其他常用方法或者技巧(自己总结的) 练习题和讲解有效的字母移位词349. 两个数组的交集1. 两数之和454. 四数相加 II15. 三数之和 总…...
MySQL企业常见架构与调优经验分享
文章目录 一、选择 PerconaServer、MariaDB 还是 MYSQL二、常用的 MYSQL 调优策略三、MYSOL 常见的应用架构分享四、MYSOL 经典应用架构 观看学习课程的笔记,分享于此~ 课程:MySQL企业常见架构与调优经验分享 mysql官方优化文档 调优MySQL参数 一、选择 …...
C++引用类型变量
引用变量的主要用途是用作函数的形参。这样函数将使用原始数据,而不是副本。除指针之外,引用也为处理大型结构提供了一种非常方便的途径。 再C中使用&符号标识引用。也就是说C给&符号赋予了另一个含义,将其用来声明引用。 引用的声…...
《C++23 新特性:现代软件开发的变革力量》
在软件开发的快速演进中,C作为一种强大且广泛应用的编程语言,不断推陈出新以适应日益复杂的开发需求。C23 的到来,为现代软件开发带来了诸多新的机遇和挑战。它的新特性不仅影响着开发者的编程习惯,也在代码效率、可维护性以及软件…...
Educational Codeforces Round 88 E. Modular Stability
题目链接 Educational Codeforces Round 88 E. Modular Stability 思路 对于任意的非负整数 x x x,我们要满足 x % a % b x % b % a x \% a \% b x \% b \% a x%a%bx%b%a。因为 a < b a < b a<b,所以只有 b b b为 a a a的倍数时才满足条件…...
Android中SurfaceView与GLSurfaceView 的关系
SurfaceView 与 GLSurfaceView 的关系 在 Android 开发中,SurfaceView 和 GLSurfaceView 是实现自定义渲染效果的关键组件。它们提供了不同的渲染方式,适用于不同的应用场景。我们将通过以下几个方面详细说明 SurfaceView 和 GLSurfaceView 的特点及实现…...
numpy——数学运算
一、标量——矢量 import numpy as npa 3.14 b np.array([[9, 5], [2, 7]])print(a) print(b)# ---------- 四则运算 ---------- print(a b) # np.add print(a - b) # np.subtract print(a * b) # np.multiply print(a / b) # np.divide 二、矢量——矢量 import nump…...
【工具】Charles对360浏览器抓包抓包
Charles 和 switchy sharp 配合,可以对 Chrome 进行抓包也可以配合对360安全浏览器抓包。 本文以Windows 电脑中的配置为例,介绍如何实现抓包。(Mac中操作基本一致) 1.安装Charles 可根据自己的电脑下载对应的版本:…...
【HarmonyOS】判断应用是否已安装
【HarmonyOS】判断应用是否已安装 前言 在鸿蒙中判断应用是否已安全,只是通过包名是无法判断应用安装与否。在鸿蒙里新增了一种判断应用安装的工具方法,即:canOpenLink。 使用该工具函数的前提是,本应用配置了查询标签querySch…...
Qt Designer客户端安装和插件集(pyqt5和pyside2)
GitHub - PyQt5/QtDesignerPlugins: Qt Designer PluginsQt Designer Plugins. Contribute to PyQt5/QtDesignerPlugins development by creating an account on GitHub.https://github.com/PyQt5/QtDesignerPlugins 一、下载客户端 https://github.com/PyQt5/QtDesigner/rel…...
基于边缘计算的智能门禁系统架构设计分析
案例 阅读以下关于 Web 系统架构设计的叙述,回答问题1至问题3。 【说明】 某公司拟开发一套基于边缘计算的智能门禁系统,用于如园区、新零售、工业现场等存在来访被访业务的场景。来访者在来访前,可以通过线上提前预约的方式将自己的个人信息…...
鸿蒙实现相机拍照及相册选择照片
前言: 1.如果你的应用不是存储类型或者相机拍照类型,你就需要用 kit.CameraKit Api 实现相机拍照和相册选择照片功能,如果你不用这个的话,你使用 picker.PhotoViewPicker ,你就需要申请权限,那你提交应用审…...
「C/C++」C++17 之 std::filesystem::recursive_directory_iterator 目录及子目录迭代器
✨博客主页何曾参静谧的博客📌文章专栏「C/C」C/C程序设计📚全部专栏「VS」Visual Studio「C/C」C/C程序设计「UG/NX」BlockUI集合「Win」Windows程序设计「DSA」数据结构与算法「UG/NX」NX二次开发「QT」QT5程序设计「File」数据文件格式「PK」Parasoli…...
智能EDA小白从0开始 —— DAY30 冉谱微RFIC-GPT
在科技日新月异的今天,电子设计自动化(EDA)行业正以前所未有的速度推动着半导体产业的革新与发展,引领着全球电子产业迈向更加智能化、高效化的未来。作为EDA领域的佼佼者,冉谱公司始终站在技术创新的前沿,…...
Android -- 调用系统相册之图片裁剪保存
前言 最近线上反馈,部分vivo手机更换头像时调用系统相册保存图片失败,经本人测试,确实有问题。 经修复后,贴出这块的代码供小伙伴们参考使用。 功能 更换头像选择图片: 调用系统相机拍照,调用系统图片…...
读《道德经》让人感到心胸气闷?董仲舒篡改
为什么读《道德经》会让人感到心胸气闷?难道是董仲舒篡改所致? 作为世界智慧源头的《老子》,享誉古今中外,是世界历史上最伟大的著作之一。 然而,很多人读《道德经》时会感到心胸气闷,这究竟是为什么呢&am…...
D52【python 接口自动化学习】- python基础之模块与标准库
day52 标准库 学习日期:20241029 学习目标:模块与标准库 -- 67 标准库:Python默认提供的便携功能有哪些? 学习笔记 标准库中的常见组件 如何通过官方文档学习标准 from urllib.request import urlopen with urlopen(http://ww…...
基于yolov8的布匹缺陷检测系统,支持图像、视频和摄像实时检测【pytorch框架、python源码】
更多目标检测和图像分类识别项目可看我主页其他文章 功能演示: 基于yolov8的布匹缺陷检测系统,支持图像、视频和摄像实时检测【pytorch框架、python源码】_哔哩哔哩_bilibili (一)简介 基于yolov8的布匹缺陷检测系统是在 PyTo…...
利用最小二乘法找圆心和半径
#include <iostream> #include <vector> #include <cmath> #include <Eigen/Dense> // 需安装Eigen库用于矩阵运算 // 定义点结构 struct Point { double x, y; Point(double x_, double y_) : x(x_), y(y_) {} }; // 最小二乘法求圆心和半径 …...
Chapter03-Authentication vulnerabilities
文章目录 1. 身份验证简介1.1 What is authentication1.2 difference between authentication and authorization1.3 身份验证机制失效的原因1.4 身份验证机制失效的影响 2. 基于登录功能的漏洞2.1 密码爆破2.2 用户名枚举2.3 有缺陷的暴力破解防护2.3.1 如果用户登录尝试失败次…...
Swift 协议扩展精进之路:解决 CoreData 托管实体子类的类型不匹配问题(下)
概述 在 Swift 开发语言中,各位秃头小码农们可以充分利用语法本身所带来的便利去劈荆斩棘。我们还可以恣意利用泛型、协议关联类型和协议扩展来进一步简化和优化我们复杂的代码需求。 不过,在涉及到多个子类派生于基类进行多态模拟的场景下,…...
汽车生产虚拟实训中的技能提升与生产优化
在制造业蓬勃发展的大背景下,虚拟教学实训宛如一颗璀璨的新星,正发挥着不可或缺且日益凸显的关键作用,源源不断地为企业的稳健前行与创新发展注入磅礴强大的动力。就以汽车制造企业这一极具代表性的行业主体为例,汽车生产线上各类…...
涂鸦T5AI手搓语音、emoji、otto机器人从入门到实战
“🤖手搓TuyaAI语音指令 😍秒变表情包大师,让萌系Otto机器人🔥玩出智能新花样!开整!” 🤖 Otto机器人 → 直接点明主体 手搓TuyaAI语音 → 强调 自主编程/自定义 语音控制(TuyaAI…...
JUC笔记(上)-复习 涉及死锁 volatile synchronized CAS 原子操作
一、上下文切换 即使单核CPU也可以进行多线程执行代码,CPU会给每个线程分配CPU时间片来实现这个机制。时间片非常短,所以CPU会不断地切换线程执行,从而让我们感觉多个线程是同时执行的。时间片一般是十几毫秒(ms)。通过时间片分配算法执行。…...
Unit 1 深度强化学习简介
Deep RL Course ——Unit 1 Introduction 从理论和实践层面深入学习深度强化学习。学会使用知名的深度强化学习库,例如 Stable Baselines3、RL Baselines3 Zoo、Sample Factory 和 CleanRL。在独特的环境中训练智能体,比如 SnowballFight、Huggy the Do…...
智能仓储的未来:自动化、AI与数据分析如何重塑物流中心
当仓库学会“思考”,物流的终极形态正在诞生 想象这样的场景: 凌晨3点,某物流中心灯火通明却空无一人。AGV机器人集群根据实时订单动态规划路径;AI视觉系统在0.1秒内扫描包裹信息;数字孪生平台正模拟次日峰值流量压力…...
全面解析各类VPN技术:GRE、IPsec、L2TP、SSL与MPLS VPN对比
目录 引言 VPN技术概述 GRE VPN 3.1 GRE封装结构 3.2 GRE的应用场景 GRE over IPsec 4.1 GRE over IPsec封装结构 4.2 为什么使用GRE over IPsec? IPsec VPN 5.1 IPsec传输模式(Transport Mode) 5.2 IPsec隧道模式(Tunne…...
推荐 github 项目:GeminiImageApp(图片生成方向,可以做一定的素材)
推荐 github 项目:GeminiImageApp(图片生成方向,可以做一定的素材) 这个项目能干嘛? 使用 gemini 2.0 的 api 和 google 其他的 api 来做衍生处理 简化和优化了文生图和图生图的行为(我的最主要) 并且有一些目标检测和切割(我用不到) 视频和 imagefx 因为没 a…...
