当前位置: 首页 > news >正文

Matlab实现蚁群算法求解旅行商优化问题(TSP)(理论+例子+程序)

一、蚁群算法

        蚁群算法由意大利学者Dorigo M等根据自然界蚂蚁觅食行为提岀。蚂蚁觅食行为表示大量蚂蚁组成的群体构成一个信息正反馈机制,在同一时间内路径越短蚂蚁分泌的信息就越多,蚂蚁选择该路径的概率就更大。

        蚁群算法的思想来源于自然界蚂蚁觅食,蚂蚁在寻找食物源时,会在路径上留下蚂蚁独有的路径标识——信息素,蚂蚁会感知其他蚂蚁在各条路径上留下的信息素,并根据各条路径上的信息素浓度来选择之后要走的路,路径上留有的信息浓度越高,则蚂蚁更倾向于选择该路径。在蚂蚁选择某条路径后也会在改路径上留下信息素吸引更多蚂蚁选择该路径,随着时间的推移,信息素浓度不断增大,蚂蚁选择路径的概率也随之增高,由此形成了正反馈机制。由于蚁群算法的正反馈性,因此蚁群算法也属于增强型学习算法的其中一种。

初始时刻,不妨将P kij (t)设为t时刻蚂蚁k从结点i转移到结点j的概率。“蚂蚁TSP”策略收到两方面的左右,首先是访问某结点的概率,这个概率的大小依赖于其他蚂蚁释放的信息素浓度。所以定义:

        式中,nkij(t)为启发函数,表示蚂蚁从结点i转移到结点j的概率;allowk为蚂蚁k下一步可转移结点的集合,随着时间的推移,allowk储存的元素数量会减小,最终会变为空集合。a 为信息素重要程度因子。

        与实际情况类似的一点是:随着时间的推移,残留在路径上的信息素会逐渐挥发,蚂蚁在经过路径时残留的信息素量也会逐渐等同于信息素挥发量,最终使信息素残留量趋于稳定。令α表示信息素挥发程度,那么所有蚂蚁遍历完所有结点之后,各路径上的信息素残留量的数学表达式如下:

        式中,ckij为第k只蚂蚁在连接结点i 与结点k的路径上释放信息素而增加的信息素浓度。Δckij为所有蚂蚁在结点i 与结点k 连接路径上释放信息素而增加的信息素浓度,通常情况下:

        式中,Q为路径信息素常量,I为第k 只蚂蚁所经过路径的总长度。

二、蚁群算法改进(自适应)

改进(自适应蚁群算法)

1)每次循环结束后求出最优解将其保留。

2)自适应的改变 值。

1. 信息素挥发系数的存在,会让没有搜索到的信息素的量减小到接近于0,降低了算法的全局搜索能力。

2. 当过大,且解的信息量过大时,曾经搜索过的解被重新搜索的可能性会变大。

3. 减小提高算法的全局搜索能力,但这会让算法的收敛速度降低

实现方法:

1. 的初始值为

2. 当算法求得的最优解在N次循环内没有改进时,减小为

三、实现步骤

四、代码结果

改进前:

改进后:

五、改进后运行的数据

1. 迭代最后城市之间的信息素(部分)

2. 最佳路径记录(部分)

3. 城市初始化顺序

4. 最终城市顺序(最优结果)

5. 最终蚁群算法初始参数

sumnum=0;       %记录选择概率全为0的次数
m=100;         %蚂蚁个数           
Alpha=1;      %信息素重要程度参数                         
Beta=5;       %启发式因子重要程度参数            
Rho=1;        %信息素蒸发系数           
Rho_min=0.2;    %最小信息素蒸发系数   
num_G=0;         %迭代多少次最优值不变得次数
num_G_max=15;    %最大迭代多少次最优值不变得次数
G_max=200;    %最大迭代次数            
Q=100;        %信息素增加强度系数  

六、代码(改进前)

clear all;      %清除所有变量           
close all;      %清图        
clc;            %清屏%% 初始化
%蚂蚁个数:50
%信息素重要程度参数:1
%启发式因子重要程度参数:5
%信息素蒸发系数:0.1
%最大迭代次数:200
%信息素增加强度系数:100
m=100;         %蚂蚁个数           
Alpha=1;      %信息素重要程度参数                         
Beta=5;       %启发式因子重要程度参数            
Rho=0.15;      %信息素蒸发系数            
G_max=300;    %最大迭代次数            
Q=100;        %信息素增加强度系数                 % C = [1304 2312;3639 1315;4177 2244;3712 1399;3488 1535;3326 1556;
% 3238 1229;4196 1044;4312 790;4386 570;3007 1970;2562 1756;
% 2788 1491;2381 1676;1332 695;3715 1678;3918 2179;4061 2370;
% 3780 2212;3676 2578;4029 2838;4263 2931;3429 1908;3507 2376;
% 3394 2643;3439 3201;2935 3240;3140 3550;2545 2357;2778 2826;
% 2370 2975];   %31 个省会城市坐标C=[6734	1453;2233	10;5530	1424;401	841;3082	1644;7608	4458;
7573	3716;7265	1268;6898	1885;1112	2049;5468	2606;5989	2873;
4706	2674;4612	2035;6347	2683;6107	669;7611	5184;7462	3590;
7732	4723;5900	3561;4483	3369;6101	1110;5199	2182;1633	2809
4307	2322;675	1006;7555	4819;7541	3981;3177	756;7352	4506;
7545	2801;3245	3305;6426	3173;4608	1198;23	2216;7248	3779;
7762	4595;7392	2244;3484	2829;6271	2135;4985	140;1916	1569;
7280	4899;7509	3239;10	2676;6807	2993;5185	3258;3023	1942];        %% 第一步:变量初始化n=size(C,1);          %n 表示问题的规模(城市个数)  
D=zeros(n,n);         %D 表示两个城市距离间隔矩阵  
for i=1:nfor j=1:nif i~=jD(i,j)=((C(i,1)-C(j,1))^2+(C(i,2)-C(j,2))^2)^0.5;    %计算两两城市之间的距离elseD(i,j)=eps;endD(j,i)=D(i,j);end
end
Eta=1./D;                       %Eta 为启发因子,这里设为距离的倒数
Tau=ones(n,n);                  %Tau 为信息素矩阵 
Tabu=zeros(m,n);                %存储并记录路径的生成
NC=1;                           %迭代计数器
R_best=zeros(G_max,n);          %各代最佳路线
L_best=inf.*ones(G_max,1);      %各代最佳路线的长度
figure(1);                      %优化解
%% 判断是否满足终止条件:若满足,则结束搜索过程,输出优化值;若不满足,则继续进行迭代优化。
while NC<=G_max            
%% 第二步:将 m 只蚂蚁放到 n 个城市上Randpos=[];for i=1:(ceil(m/n))Randpos=[Randpos,randperm(n)];endTabu(:,1)=(Randpos(1,1:m))'; 
%% 第三步:m 只蚂蚁按概率函数选择下一座城市,完成各自的周游
%将 m 个蚂蚁置于n个城市上,计算待选城市的概率分布,m 只蚂蚁按概率函数选择下一座城市,完成各自的周游。for j=2:nfor i=1:mvisited=Tabu(i,1:(j-1));  %己访问的城市J=zeros(1,(n-j+1));       %待访问的城市P=J;                      %待访问城市的选择概率分布Jc=1;for k=1:nif length(find(visited==k))==0J(Jc)=k;Jc=Jc+1;endend
%计算待选城市的概率分布for k=1:length(J)P(k)=(Tau(visited(end),J(k))^Alpha)...*(Eta(visited(end),J(k))^Beta);endP=P/(sum(P));
%按概率原则选取下一个城市Pcum=cumsum(P);         % 如 P=[1 2 3 4],则cumsum(P)=[1 3 6 10],要累加,轮盘赌法,依次看是否在转得的区域内Select=find(Pcum>=rand);%轮盘赌法随机选择to_visit=J(Select(1));  %待选择的城市Tabu(i,j)=to_visit;     %访问的城市endendif NC>=2Tabu(1,:)=R_best(NC-1,:);   %最佳路线end
%% 第四步:记录本次迭代最佳路线L=zeros(m,1);for i=1:mR=Tabu(i,:);  %第i只蚂蚁走过的城市for j=1:(n-1)L(i)=L(i)+D(R(j),R(j+1));  %计算i只蚂蚁走过的路径endL(i)=L(i)+D(R(1),R(n)); %加上初始位置的路径endL_best(NC)=min(L);      %获取路径最少的一只pos=find(L==L_best(NC));%在50只蚂蚁中寻找走最少的一只R_best(NC,:)=Tabu(pos(1),:);%记录最佳路径%% 第五步:更新信息素%蚁环算法更新信息素增量%离线更新——蚁群Delta_Tau=zeros(n,n);for i=1:mfor j=1:(n-1)Delta_Tau(Tabu(i,j),Tabu(i,j+1))=...Delta_Tau(Tabu(i,j),Tabu(i,j+1))+Q/L(i);%信息素增量的更新endDelta_Tau(Tabu(i,n),Tabu(i,1))=...Delta_Tau(Tabu(i,n),Tabu(i,1))+Q/L(i);%加上起使信息素增量的更新endTau=(1-Rho).*Tau+Delta_Tau;  %更新公式
%% 第六步: 禁忌表清零Tabu=zeros(m,n);
%历代最优路线for i=1:n-1plot([ C(R_best(NC,i),1), C(R_best(NC,i+1),1)],...[C(R_best(NC,i),2), C(R_best(NC,i+1),2)],'bo-');%绘制路径hold on;endplot([C(R_best(NC,n),1), C(R_best(NC,1),1)],...[C(R_best(NC,n),2), C(R_best(NC,1),2)],'ro-');  %绘制更新过程title(['优化最短距离:',num2str(L_best(NC))]); %输出结果hold off;pause(0.005);NC=NC+1;   %迭代+1 
end
%% 第七步:输出结果
Pos=find(L_best==min(L_best));
Shortest_Route=R_best(Pos(1),:);          %最佳路线 
Shortest_Length=L_best(Pos(1));           %最佳路线长度
figure(2),
plot(L_best)
xlabel('迭代次数')
ylabel('目标函数值')
title('适应度进化曲线')

七、代码(改进后)

clear all;      %清除所有变量           
close all;      %清图        
clc;            %清屏
%% 初始化sumnum=0;       %记录选择概率全为0的次数
m=100;         %蚂蚁个数           
Alpha=1;      %信息素重要程度参数                         
Beta=5;       %启发式因子重要程度参数            Rho=1;        %信息素蒸发系数           
Rho_min=0.2;    %最小信息素蒸发系数   
num_G=0;         %迭代多少次最优值不变得次数
num_G_max=3;    %最大迭代多少次最优值不变得次数G_max=200;    %最大迭代次数            
Q=100;        %信息素增加强度系数            %48 个省会城市坐标
C=[6734	1453;2233	10;5530	1424;401	841;3082	1644;7608	4458;
7573	3716;7265	1268;6898	1885;1112	2049;5468	2606;5989	2873;
4706	2674;4612	2035;6347	2683;6107	669;7611	5184;7462	3590;
7732	4723;5900	3561;4483	3369;6101	1110;5199	2182;1633	2809
4307	2322;675	1006;7555	4819;7541	3981;3177	756;7352	4506;
7545	2801;3245	3305;6426	3173;4608	1198;23	2216;7248	3779;
7762	4595;7392	2244;3484	2829;6271	2135;4985	140;1916	1569;
7280	4899;7509	3239;10	2676;6807	2993;5185	3258;3023	1942];        %% 第一步:变量初始化
aaaa=eps;
n=size(C,1);          %n 表示问题的规模(城市个数)  
D=zeros(n,n);         %D 表示两个城市距离间隔矩阵  
for i=1:nfor j=1:nif i~=jD(i,j)=((C(i,1)-C(j,1))^2+(C(i,2)-C(j,2))^2)^0.5;    %计算两两城市之间的距离elseD(i,j)=eps;%eps表示从 1.0 到下一个最大双精度数的距离endD(j,i)=D(i,j);end
end
Eta=1./D;                       %Eta 为启发因子,这里设为距离的倒数
Tau=ones(n,n);                  %Tau 为信息素矩阵 
Tabu=zeros(m,n);                %存储并记录路径的生成
NC=1;                           %迭代计数器
R_best=zeros(G_max,n);          %各代最佳路线
L_best=inf.*ones(G_max,1);      %各代最佳路线的长度
figure(1);                      %优化解
%% 判断是否满足终止条件:若满足,则结束搜索过程,输出优化值;若不满足,则继续进行迭代优化。
while NC<=G_max            
%% 第二步:将 m 只蚂蚁放到 n 个城市上Randpos=[];for i=1:(ceil(m/n))%蚂蚁个数除以城市个数向上取整Randpos=[Randpos,randperm(n)];%生成ceil(m/n)个1*n的矩阵并合并endTabu(:,1)=(Randpos(1,1:m))'; %将Randpos的第一行前m个放到Tabu的第1列
%% 第三步:m 只蚂蚁按概率函数选择下一座城市,完成各自的周游
%将 m 个蚂蚁置于n个城市上,计算待选城市的概率分布,m 只蚂蚁按概率函数选择下一座城市,完成各自的周游。for j=2:n%第j个城市for i=1:m%第i个蚂蚁visited=Tabu(i,1:(j-1));  %己访问的城市J=zeros(1,(n-j+1));       %待访问的城市P=J;                      %待访问城市的选择概率分布Jc=1;for k=1:nif length(find(visited==k))==0%判断第k个城市有没有被访问J(Jc)=k;Jc=Jc+1;endend
%计算待选城市的概率分布for k=1:length(J)P(k)=(Tau(visited(end),J(k))^Alpha)...*(Eta(visited(end),J(k))^Beta);end%% 修改%开始if sum(P)==0to_visit=J(ceil(length(J)*rand)); %% 如果所选择的全部城市信息素为0将随机选择sumnum=sumnum+1;else%结束    P=P/(sum(P));
%按概率原则选取下一个城市Pcum=cumsum(P);         % 如 P=[1 2 3 4],则cumsum(P)=[1 3 6 10],要累加,轮盘赌法,依次看是否在转得的区域内Select=find(Pcum>=rand);%轮盘赌法随机选择to_visit=J(Select(1));  %待选择的城市endTabu(i,j)=to_visit;     %访问的城市endendif NC>=2Tabu(1,:)=R_best(NC-1,:);   %最佳路线end
%% 第四步:记录本次迭代最佳路线L=zeros(m,1);%m*1的距离矩阵for i=1:mR=Tabu(i,:);  %第i只蚂蚁走过的城市for j=1:(n-1)L(i)=L(i)+D(R(j),R(j+1));  %计算i只蚂蚁走过的路径endL(i)=L(i)+D(R(1),R(n)); %加上初始位置的路径endL_best(NC)=min(L);      %获取路径最少的一只pos=find(L==L_best(NC));%在m只蚂蚁中寻找走最少的一只R_best(NC,:)=Tabu(pos(1),:);%记录最佳路径
%% 改进算法%开始
if NC>1
if L_best(NC)==L_best(NC-1)num_G=num_G+1;if num_G >= num_G_maxif Rho>=Rho_minRho=0.95*Rho;if Rho<=Rho_minRho=Rho_min;endnum_G=0;endend
end
end
Rho_list(NC)=Rho;
%结束%% 第五步:更新信息素%蚁环算法更新信息素增量%离线更新——蚁群Delta_Tau=zeros(n,n);for i=1:mfor j=1:(n-1)Delta_Tau(Tabu(i,j),Tabu(i,j+1))=...Delta_Tau(Tabu(i,j),Tabu(i,j+1))+Q/L(i);%信息素增量的更新endDelta_Tau(Tabu(i,n),Tabu(i,1))=...Delta_Tau(Tabu(i,n),Tabu(i,1))+Q/L(i);%加上起使信息素增量的更新endTau=(1-Rho).*Tau+Delta_Tau;  %更新公式
%% 第六步: 禁忌表清零Tabu=zeros(m,n);
%历代最优路线for i=1:n-1plot([ C(R_best(NC,i),1), C(R_best(NC,i+1),1)],...[C(R_best(NC,i),2), C(R_best(NC,i+1),2)],'bo-');%绘制路径hold on;endplot([C(R_best(NC,n),1), C(R_best(NC,1),1)],...[C(R_best(NC,n),2), C(R_best(NC,1),2)],'ro-');  %绘制更新过程title(['优化最短距离:',num2str(L_best(NC))]); %输出结果hold off;pause(0.005);NC=NC+1;   %迭代+1 
end
%% 第七步:输出结果
Pos=find(L_best==min(L_best));
Shortest_Route=R_best(Pos(1),:);          %最佳路线 
Shortest_Length=L_best(Pos(1));           %最佳路线长度
figure(2),
plot(L_best)
xlabel('迭代次数')
ylabel('目标函数值')
title('适应度进化曲线')
figure(3),
plot(Rho_list)
xlabel('迭代次数')
ylabel('挥发系数')
title('挥发系数自适应曲线')

相关文章:

Matlab实现蚁群算法求解旅行商优化问题(TSP)(理论+例子+程序)

一、蚁群算法 蚁群算法由意大利学者Dorigo M等根据自然界蚂蚁觅食行为提岀。蚂蚁觅食行为表示大量蚂蚁组成的群体构成一个信息正反馈机制&#xff0c;在同一时间内路径越短蚂蚁分泌的信息就越多&#xff0c;蚂蚁选择该路径的概率就更大。 蚁群算法的思想来源于自然界蚂蚁觅食&a…...

2024年10月HarmonyOS应用开发者基础认证全新题库

注意事项&#xff1a;切记在考试之外的设备上打开题库进行搜索&#xff0c;防止切屏三次考试自动结束&#xff0c;题目是乱序&#xff0c;每次考试&#xff0c;选项的顺序都不同 这是基础认证题库&#xff0c;不是高级认证题库注意看清楚标题 高级认证题库地址&#xff1a;20…...

kafka 分布式(不是单机)的情况下,如何保证消息的顺序消费?

大家好&#xff0c;我是锋哥。今天分享关于【kafka 分布式&#xff08;不是单机&#xff09;的情况下&#xff0c;如何保证消息的顺序消费?】面试题&#xff1f;希望对大家有帮助&#xff1b; kafka 分布式&#xff08;不是单机&#xff09;的情况下&#xff0c;如何保证消息的…...

数据分析案例-苹果品质数据可视化分析+建模预测

&#x1f935;‍♂️ 个人主页&#xff1a;艾派森的个人主页 ✍&#x1f3fb;作者简介&#xff1a;Python学习者 &#x1f40b; 希望大家多多支持&#xff0c;我们一起进步&#xff01;&#x1f604; 如果文章对你有帮助的话&#xff0c; 欢迎评论 &#x1f4ac;点赞&#x1f4…...

沈阳乐晟睿浩科技有限公司抖音小店运营创新

在当今这个数字化迅猛发展的时代&#xff0c;电子商务已经成为推动经济增长的重要引擎。而在电商的广阔舞台上&#xff0c;短视频与直播带货的崛起无疑是最为耀眼的明星之一。作为这一领域的佼佼者&#xff0c;抖音小店凭借其庞大的用户基础和独特的算法优势&#xff0c;吸引了…...

【前端】CSS知识梳理

基础&#xff1a;标签选择器、类选择器、id选择器和通配符选择器 font:font-style(normal) font-weight(400) font-size(16px) /line-height(0) font-family(宋体&#xff09; 复合&#xff1a; 后代选择器&#xff08; &#xff09;、子选择器&#xff08;>)、并集选择器(…...

【undefined reference to xxx】zookeeper库编译和安装 / sylar项目ubuntu20系统编译

最近学习sylar项目&#xff0c;编译项目时遇到链接库不匹配的问题&#xff0c;记录下自己解决问题过程&#xff0c;虽然过程很艰难&#xff0c;但还是解决了&#xff0c;以下内容供大家参考&#xff01; undefined reference to 问题分析 项目编译报错 /usr/bin/ld: ../lib/lib…...

IDEA解决 properties 文件乱码问题

博主介绍&#xff1a; 计算机科班人&#xff0c;全栈工程师&#xff0c;掌握C、C#、Java、Python、Android等主流编程语言&#xff0c;同时也熟练掌握mysql、oracle、sqlserver等主流数据库&#xff0c;具有丰富的项目经验和开发技能。提供相关的学习资料、程序开发、技术解答、…...

超越Jira?2024年探索项目管理新工具!

一、Jira 在项目管理中的地位 Jira 作为一款在项目管理领域久负盛名的工具&#xff0c;有着不可忽视的地位。它以强大的问题跟踪和管理功能著称&#xff0c;无论是软件缺陷、新功能需求、任务分配还是技术难题的解决&#xff0c;都能精准把控。其高可定制性更是满足了不同团队…...

大模型,多模态大模型面试问题【计算图,LLama,交叉熵,SiLU,RLHF】

大模型&#xff0c;多模态大模型面试问题【计算图&#xff0c;LLama&#xff0c;交叉熵&#xff0c;SiLU&#xff0c;RLHF】 问题一&#xff1a;讲一讲计算图中pytorch是什么&#xff0c;TensorFlow是什么&#xff1f;1. PyTorch2. TensorFlow区别总结 问题二&#xff1a;Llama…...

凌雄科技打造DaaS模式,IT设备产业链由内而外嬗变升级

恒指正处在一种“奇妙”的波动当中。低估反弹&#xff0c;瞬时拉高&#xff0c;极速回调。这些变化集中在一条曲线上&#xff0c;让市场无所适从。 但事实上&#xff0c;所有的趋势一定总是以长期为锚。这个长期的尺度&#xff0c;可能会超过一般人的预估。因为中间需要经历很…...

Oracle视频基础1.2.1练习

1.2.1 需求&#xff1a; 完整格式查看所有用户进程判断oracle启动状态 连接sqlplus不登陆 以sysdba身份登陆&#xff0c;通过登陆信息判断oracle启动状态 启动数据库&#xff0c;查系统全局区动态组件表 使用shell&#xff0c;启动监听然后返回sql ps -ef sqlplus /nolog con…...

15、基于AT89C52的数码电子时钟proteus仿真设计

一、仿真原理图: 二、仿真效果: 三、相关代码: 1、timer0定时中断: void Time0(void ) interrupt 1 using 1 { count++; if(count == 20) { count = 0; second++; if(second >= 60) { second = 0; …...

UML总结

零&#xff1a;学习链接 UML_哔哩哔哩_bilibili 一&#xff1a;UML概述 二&#xff1a;类图 类图&#xff08;Class Diagram&#xff09;是统一建模语言&#xff08;UML&#xff09;中一种重要的图形表示&#xff0c;用于描述系统中的类及其之间的关系。它是面向对象设计中常…...

网站被浏览器提示不安全怎么办?——附解决方案

当你的网站被浏览器标记为不安全时&#xff0c;这通常意味着有一些问题需要解决。以下是一些解决这个问题的步骤&#xff1a; 检查SSL证书&#xff1a;首先&#xff0c;确保你的网站使用了有效的SSL证书。SSL证书可以加密浏览器和服务器之间的数据传输&#xff0c;保护用户数据…...

“前端兼容——CSS篇”(进阶版)

“前端兼容——CSS篇”&#xff08;进阶版&#xff09; 上一篇文章写了css 兼容问题处理的基础篇 点击这里基础篇—传送门&#xff0c;这里想给粉丝分享一下css 更深一点的兼容场景&#xff0c;和处理方案 文章目录 “前端兼容——CSS篇”&#xff08;进阶版&#xff09;进阶CS…...

使用Docker Compose简化微服务部署

文章目录 Docker Compose简介安装Docker Compose在Windows上安装Docker Compose在macOS上安装Docker Compose在Linux上安装Docker Compose 创建Docker Compose文件创建compose文件构建并运行服务 使用Docker Compose网络定义网络验证网络连接 使用Docker Compose卷定义卷使用卷…...

2025考研各省市网上确认时间汇总!

2025考研各省市网上确认时间汇总&#xff01; 安徽&#xff1a;11月1日至5日 福建&#xff1a;11月1日-11月5日 山东&#xff1a;10月31日9:00至11月5日12:00 新疆&#xff1a;10月31日至11月4日17:00 湖南&#xff1a;11月1日9:00-4日12:00 广东&#xff1a;10月下旬至1…...

SSL/TLS 密码套件漏洞分析以及修复方法

1. 前言 在当今数字化时代&#xff0c;网络安全至关重要。SSL/TLS 协议作为保障网络通信安全的重要手段&#xff0c;广泛应用于各类网络应用中。然而&#xff0c;如同任何技术一样&#xff0c;SSL/TLS 也并非绝对安全&#xff0c;存在着一些可能被攻击者利用的漏洞。本文将深入…...

[Vue warn]: Do not use built-in or reserved HTML elements as component id:

这个Vue警告信息表明不要将内置或保留的HTML元素名称用作组件的ID。在Vue中&#xff0c;组件的ID应该是唯一的&#xff0c;以确保没有冲突。很可能是一个保留字或者是一个内置的HTML元素名称&#xff0c;所以Vue拒绝了这样的用法。 解决方法&#xff1a; 更改组件的ID&#x…...

python打卡day49

知识点回顾&#xff1a; 通道注意力模块复习空间注意力模块CBAM的定义 作业&#xff1a;尝试对今天的模型检查参数数目&#xff0c;并用tensorboard查看训练过程 import torch import torch.nn as nn# 定义通道注意力 class ChannelAttention(nn.Module):def __init__(self,…...

【HarmonyOS 5.0】DevEco Testing:鸿蒙应用质量保障的终极武器

——全方位测试解决方案与代码实战 一、工具定位与核心能力 DevEco Testing是HarmonyOS官方推出的​​一体化测试平台​​&#xff0c;覆盖应用全生命周期测试需求&#xff0c;主要提供五大核心能力&#xff1a; ​​测试类型​​​​检测目标​​​​关键指标​​功能体验基…...

centos 7 部署awstats 网站访问检测

一、基础环境准备&#xff08;两种安装方式都要做&#xff09; bash # 安装必要依赖 yum install -y httpd perl mod_perl perl-Time-HiRes perl-DateTime systemctl enable httpd # 设置 Apache 开机自启 systemctl start httpd # 启动 Apache二、安装 AWStats&#xff0…...

Swift 协议扩展精进之路:解决 CoreData 托管实体子类的类型不匹配问题(下)

概述 在 Swift 开发语言中&#xff0c;各位秃头小码农们可以充分利用语法本身所带来的便利去劈荆斩棘。我们还可以恣意利用泛型、协议关联类型和协议扩展来进一步简化和优化我们复杂的代码需求。 不过&#xff0c;在涉及到多个子类派生于基类进行多态模拟的场景下&#xff0c;…...

【解密LSTM、GRU如何解决传统RNN梯度消失问题】

解密LSTM与GRU&#xff1a;如何让RNN变得更聪明&#xff1f; 在深度学习的世界里&#xff0c;循环神经网络&#xff08;RNN&#xff09;以其卓越的序列数据处理能力广泛应用于自然语言处理、时间序列预测等领域。然而&#xff0c;传统RNN存在的一个严重问题——梯度消失&#…...

剑指offer20_链表中环的入口节点

链表中环的入口节点 给定一个链表&#xff0c;若其中包含环&#xff0c;则输出环的入口节点。 若其中不包含环&#xff0c;则输出null。 数据范围 节点 val 值取值范围 [ 1 , 1000 ] [1,1000] [1,1000]。 节点 val 值各不相同。 链表长度 [ 0 , 500 ] [0,500] [0,500]。 …...

短视频矩阵系统文案创作功能开发实践,定制化开发

在短视频行业迅猛发展的当下&#xff0c;企业和个人创作者为了扩大影响力、提升传播效果&#xff0c;纷纷采用短视频矩阵运营策略&#xff0c;同时管理多个平台、多个账号的内容发布。然而&#xff0c;频繁的文案创作需求让运营者疲于应对&#xff0c;如何高效产出高质量文案成…...

十九、【用户管理与权限 - 篇一】后端基础:用户列表与角色模型的初步构建

【用户管理与权限 - 篇一】后端基础:用户列表与角色模型的初步构建 前言准备工作第一部分:回顾 Django 内置的 `User` 模型第二部分:设计并创建 `Role` 和 `UserProfile` 模型第三部分:创建 Serializers第四部分:创建 ViewSets第五部分:注册 API 路由第六部分:后端初步测…...

Python常用模块:time、os、shutil与flask初探

一、Flask初探 & PyCharm终端配置 目的: 快速搭建小型Web服务器以提供数据。 工具: 第三方Web框架 Flask (需 pip install flask 安装)。 安装 Flask: 建议: 使用 PyCharm 内置的 Terminal (模拟命令行) 进行安装,避免频繁切换。 PyCharm Terminal 配置建议: 打开 Py…...

iOS 项目怎么构建稳定性保障机制?一次系统性防错经验分享(含 KeyMob 工具应用)

崩溃、内存飙升、后台任务未释放、页面卡顿、日志丢失——稳定性问题&#xff0c;不一定会立刻崩&#xff0c;但一旦积累&#xff0c;就是“上线后救不回来的代价”。 稳定性保障不是某个工具的功能&#xff0c;而是一套贯穿开发、测试、上线全流程的“观测分析防范”机制。 …...