当前位置: 首页 > news >正文

两步GMM计算权重矩阵

在广义矩方法(GMM)中,权重矩阵(W)的选择是关键的一步。理想情况下,(W)应该等于矩条件的协方差矩阵的逆矩阵。这是因为使用这样的权重矩阵可以使得估计量达到最小方差,从而提高估计效率。

两步GMM计算权重矩阵(W)

  1. 第一步 - 初始估计

    • 使用一个简单的权重矩阵(如单位矩阵)来进行初始的参数估计。
    • 基于这个初始估计,计算出样本矩条件向量(g_n(\theta))。
  2. 估计协方差矩阵

    • 使用初始估计得到的参数值来计算每个观测点的矩条件向量(g(x_i, \hat{\theta}_0))。
    • 计算这些矩条件向量的样本协方差矩阵(\hat{S})。
  3. 构造新的权重矩阵

    • 将上述估计得到的协方差矩阵取逆,即得到更有效的权重矩阵(\hat{W} = \hat{S}^{-1})。

MATLAB代码示例

下面是一个MATLAB代码示例,演示如何通过两步GMM来计算权重矩阵(W):

% 生成模拟数据
n = 1000; % 样本数量
x = randn(n, 1); % 自变量
e = randn(n, 1); % 随机扰动项
y = 1 + 2 * x + e; % 因变量,真实参数为β0=1, β1=2% 定义矩条件函数
moment_conditions = @(params, x, y) [y - (params(1) + params(2) * x), ...x .* (y - (params(1) + params(2) * x))];% 第一步:使用单位矩阵作为初始权重矩阵进行初始估计
W_initial = eye(2);
options = optimset('Display', 'iter', 'MaxIter', 500, 'TolX', 1e-8, 'TolFun', 1e-8);
objective_function = @(params, x, y, W) moment_conditions(params, x, y)' * W * moment_conditions(params, x, y);
start_params = [0, 0];
result_initial = fminunc(@(params) objective_function(params, x, y, W_initial), start_params, options);% 第二步:基于初始估计计算新的权重矩阵
g_n = moment_conditions(result_initial, x, y);
S_hat = g_n' * g_n / n; % 估计协方差矩阵
W_new = inv(S_hat); % 新的权重矩阵% 输出新的权重矩阵
disp('New Weight Matrix W:');
disp(W_new);% 可以继续使用新的权重矩阵W_new进行第二次优化
result_final = fminunc(@(params) objective_function(params, x, y, W_new), result_initial, options);% 输出最终结果
fprintf('Final estimated parameters: beta0 = %.4f, beta1 = %.4f\n', result_final(1), result_final(2));

代码解释

  1. 生成数据:生成模拟数据。
  2. 定义矩条件:定义矩条件函数moment_conditions
  3. 第一步 - 初始估计:使用单位矩阵作为初始权重矩阵,通过fminunc进行初始参数估计。
  4. 第二步 - 估计协方差矩阵:基于初始估计,计算每个观测点的矩条件向量,并估计协方差矩阵(\hat{S})。
  5. 构造新的权重矩阵:将协方差矩阵取逆,得到新的权重矩阵(\hat{W})。
  6. 输出新的权重矩阵:显示新的权重矩阵。
  7. 第二次优化:使用新的权重矩阵进行第二次优化,得到最终的参数估计。

这个过程展示了如何通过两步GMM来计算和更新权重矩阵。你可以根据具体问题调整矩条件、数据处理和优化选项。如果你有更具体的模型或数据,请提供更多细节以便进一步定制化处理。

相关文章:

两步GMM计算权重矩阵

在广义矩方法(GMM)中,权重矩阵(W)的选择是关键的一步。理想情况下,(W)应该等于矩条件的协方差矩阵的逆矩阵。这是因为使用这样的权重矩阵可以使得估计量达到最小方差,从而提高估计效率。 两步GMM计算权重矩阵(W) 第一…...

leetcode452. 用最少数量的箭引爆气球

有一些球形气球贴在一堵用 XY 平面表示的墙面上。墙面上的气球记录在整数数组 points ,其中points[i] [xstart, xend] 表示水平直径在 xstart 和 xend之间的气球。你不知道气球的确切 y 坐标。 一支弓箭可以沿着 x 轴从不同点 完全垂直 地射出。在坐标 x 处射出一…...

【Android】使用TextView实现按钮开关代替Switch开关

介绍 Android 本身自己带的有开关控件,但是很多时候我们是不愿意使用这种开关的,感觉使用起来比较麻烦,特别是遇到需要延迟操作的情况。 比如有一个需求是这样的:我们需要打开一个设置,但是这个设置是否打开需要经过…...

(49)MATLAB实现迫零均衡器原理与代码

文章目录 前言一、迫零均衡器设计说明二、迫零均衡器MATLAB源代码1.函数说明2.代码实现3.辅助函数 前言 使用MATLAB实现迫零均衡器。给出完整的MATLAB设计源代码。 一、迫零均衡器设计说明 理想的迫零均衡器有无限多个抽头权系数,是不能实现的,本文考虑…...

滚柱导轨出现异常损坏的原因

滚柱导轨是一种精密的直线滚动导轨,具有较高的承载能力和较高的刚性,对反复动作、起动、停止往复运动频率较高情况下可减少整机重量和传动机构及动力成本。滚柱导轨可获得较高的灵敏度和高性能的平面直线运动,在重载或变载的情况下&#xff0…...

架构师考试系列(6)论文专题:论分布式架构设计

论分布式架构设计 摘要: 2020年2月,我司中标了某省电力公司的配网运维管控项目,该项目接入电力公司营销、设备和调度等多个部门的专业数据,为配网运行、配网检修、配网抢修、配网工程、供电服务等核心业务提供数据支撑。由于本项目是省级项目,系统可靠性、可用性要求比较…...

leetcode hot100【LeetCode 230. 二叉搜索树中第K小的元素】java实现

LeetCode 230. 二叉搜索树中第K小的元素 题目描述 给定一个二叉搜索树的根节点 root,和一个整数 k,请你找出其中第 k 小的节点。 注意: 题目保证 k 的有效性。 示例: 给定二叉搜索树: 5/ \3 7/ \ \ 2 4 …...

从0开始深度学习(23)——图像卷积

上节了解了卷积层的原理,本节以图像为例,介绍一下它的实际应用 1 互相关运算 严格来说,卷积层是个错误的叫法,因为它所表达的运算其实是互相关运算(cross-correlation)。 首先,我们暂时忽略通…...

编程小白如何成为大神

成为编程大神的过程需要时间、耐心和实践。以下是一些适合大学新生的入门攻略: 1. 确定学习目标 选择语言:选择一门编程语言作为起点,如 Python、Java 或 JavaScript。Python 是初学者的热门选择,因为其语法简洁易懂。设定目标&…...

JetCache启动循环依赖分析

问题呈现 项目性能优化,需要将本地内存(JVM内存)替换为本地Redis(同一个Pod中的Container),降低JVM内存和GC的压力,同时引入了JetCache简化和统一使用(对JetCache也做了扩展&#x…...

【科研绘图】3DMAX管状图表生成插件TubeChart使用方法

3DMAX管状图表生成插件TubeChart,一款用于制作3D管状图表的工具。可以自定义切片的数量以及随机或指定切片颜色。 【版本要求】 3dMax 2008及更高版本 【安装方法】 TubeChart插件无需安装,使用时直接拖动插件脚本文件到3dMax视口中打开即可&#xff0…...

基于SSM土家风景文化管理系统的设计

管理员账户功能包括:系统首页,个人中心,用户管理,景点分类管理,热门景点管理,门票订单管理,旅游线路管理,系统管理 前提账号功能包括:系统首页,个人中心&…...

C++超强图片预览器

下载 文件打开关联 关键代码 uint32_t getSrcPx3(const cv::Mat& srcImg, int srcX, int srcY, int mainX, int mainY) const {cv::Vec3b srcPx = srcImg.at<cv::Vec3b>(srcY, srcX);intUnion ret = 255;if (curPar.zoomCur < curPar.ZOOM_BASE && src…...

网络搜索引擎Shodan(2)

声明&#xff1a;学习视频来自b站up主 泷羽sec&#xff0c;如涉及侵权马上删除文章 声明&#xff1a;本文主要用作技术分享&#xff0c;所有内容仅供参考。任何使用或依赖于本文信息所造成的法律后果均与本人无关。请读者自行判断风险&#xff0c;并遵循相关法律法规。 感谢泷…...

【Tableau】

Tableau 是一款强大且广泛使用的数据可视化和商业智能&#xff08;BI&#xff09;工具&#xff0c;用于帮助用户分析、探索和呈现数据。它通过直观的拖放界面&#xff0c;允许用户轻松创建动态仪表板和报告&#xff0c;而无需编写代码。Tableau 可处理多种数据源&#xff0c;如…...

分类与有序回归

分类问题 分类问题&#xff0c;例如分类猫、狗、猪时&#xff0c;使用数字进行表示为1&#xff0c;2&#xff0c;3。而1、2、3之间有大小&#xff0c;分类算法为了平衡标签之间的差异&#xff0c;使得损失公平&#xff0c;会使用one-hot编码。例如&#xff0c;分别使用&#x…...

Mac如何实现高效且干净的卸载应用程序

使用Mac卸载应用程序&#xff0c;你还在使用废纸篓这个办法吗&#xff0c;看不见卸载了什么&#xff0c;看不见清理了多少&#xff0c;真的不会有残留吗 XApp Mac上的卸载专家&#xff0c;强大的垃圾逻辑检测&#xff0c;垃圾扫描更全面&#xff0c;卸载更干净 使用简单&#…...

LaTex中的常用空格命令

【LaTex中的常用空格命令】 在 LaTeX 中&#xff0c;有几个常用的空格指令&#xff1a; ● \,&#xff1a;一个小空格&#xff0c;通常用于在数学公式中插入较小的间距。● \quad&#xff1a;一个等宽空格&#xff0c;相当于当前字体尺寸下的字符宽度。 ● \qquad&#xff1a;两…...

k8s 1.28.2 集群部署 Thanos 对接 MinIO 实现 Prometheus 数据长期存储

文章目录 [toc]什么是 ThanosThanos 的主要功能Thanos 的架构组件Thanos 部署架构SidecarReceive架构选择 开始部署部署架构创建 namespacenode-exporter 部署kube-state-metrics 部署Prometheus Thanos-Sidecar 部署固定节点创建 label生成 secretMinIO 配置etcd 证书 启动 P…...

域渗透AD渗透攻击利用 python脚本攻击之IPC连接 以及 python生成exe可执行程序讲解方式方法

Python脚本批量检测ipc连接 import os, timeips [192.168.1.121,192.168.1.8 ] users {administrator,hack,hack1,test, } passs {123qq.com,456qq.com,Admin12345 } for ip in ips:for user in users:for mima in passs:exec1 "net use \\" "\\" i…...

TDengine 快速体验(Docker 镜像方式)

简介 TDengine 可以通过安装包、Docker 镜像 及云服务快速体验 TDengine 的功能&#xff0c;本节首先介绍如何通过 Docker 快速体验 TDengine&#xff0c;然后介绍如何在 Docker 环境下体验 TDengine 的写入和查询功能。如果你不熟悉 Docker&#xff0c;请使用 安装包的方式快…...

DeepSeek 赋能智慧能源:微电网优化调度的智能革新路径

目录 一、智慧能源微电网优化调度概述1.1 智慧能源微电网概念1.2 优化调度的重要性1.3 目前面临的挑战 二、DeepSeek 技术探秘2.1 DeepSeek 技术原理2.2 DeepSeek 独特优势2.3 DeepSeek 在 AI 领域地位 三、DeepSeek 在微电网优化调度中的应用剖析3.1 数据处理与分析3.2 预测与…...

Swift 协议扩展精进之路:解决 CoreData 托管实体子类的类型不匹配问题(下)

概述 在 Swift 开发语言中&#xff0c;各位秃头小码农们可以充分利用语法本身所带来的便利去劈荆斩棘。我们还可以恣意利用泛型、协议关联类型和协议扩展来进一步简化和优化我们复杂的代码需求。 不过&#xff0c;在涉及到多个子类派生于基类进行多态模拟的场景下&#xff0c;…...

汽车生产虚拟实训中的技能提升与生产优化​

在制造业蓬勃发展的大背景下&#xff0c;虚拟教学实训宛如一颗璀璨的新星&#xff0c;正发挥着不可或缺且日益凸显的关键作用&#xff0c;源源不断地为企业的稳健前行与创新发展注入磅礴强大的动力。就以汽车制造企业这一极具代表性的行业主体为例&#xff0c;汽车生产线上各类…...

Qwen3-Embedding-0.6B深度解析:多语言语义检索的轻量级利器

第一章 引言&#xff1a;语义表示的新时代挑战与Qwen3的破局之路 1.1 文本嵌入的核心价值与技术演进 在人工智能领域&#xff0c;文本嵌入技术如同连接自然语言与机器理解的“神经突触”——它将人类语言转化为计算机可计算的语义向量&#xff0c;支撑着搜索引擎、推荐系统、…...

ServerTrust 并非唯一

NSURLAuthenticationMethodServerTrust 只是 authenticationMethod 的冰山一角 要理解 NSURLAuthenticationMethodServerTrust, 首先要明白它只是 authenticationMethod 的选项之一, 并非唯一 1 先厘清概念 点说明authenticationMethodURLAuthenticationChallenge.protectionS…...

Springcloud:Eureka 高可用集群搭建实战(服务注册与发现的底层原理与避坑指南)

引言&#xff1a;为什么 Eureka 依然是存量系统的核心&#xff1f; 尽管 Nacos 等新注册中心崛起&#xff0c;但金融、电力等保守行业仍有大量系统运行在 Eureka 上。理解其高可用设计与自我保护机制&#xff0c;是保障分布式系统稳定的必修课。本文将手把手带你搭建生产级 Eur…...

【Web 进阶篇】优雅的接口设计:统一响应、全局异常处理与参数校验

系列回顾&#xff1a; 在上一篇中&#xff0c;我们成功地为应用集成了数据库&#xff0c;并使用 Spring Data JPA 实现了基本的 CRUD API。我们的应用现在能“记忆”数据了&#xff01;但是&#xff0c;如果你仔细审视那些 API&#xff0c;会发现它们还很“粗糙”&#xff1a;有…...

什么是EULA和DPA

文章目录 EULA&#xff08;End User License Agreement&#xff09;DPA&#xff08;Data Protection Agreement&#xff09;一、定义与背景二、核心内容三、法律效力与责任四、实际应用与意义 EULA&#xff08;End User License Agreement&#xff09; 定义&#xff1a; EULA即…...

自然语言处理——Transformer

自然语言处理——Transformer 自注意力机制多头注意力机制Transformer 虽然循环神经网络可以对具有序列特性的数据非常有效&#xff0c;它能挖掘数据中的时序信息以及语义信息&#xff0c;但是它有一个很大的缺陷——很难并行化。 我们可以考虑用CNN来替代RNN&#xff0c;但是…...