当前位置: 首页 > news >正文

Matlab数字信号处理——基于改进小波变换的图像去噪方法(7种去噪算法)

1.基于小波变换的阈值收缩法去噪

该方法利用小波变换分离出信号中的噪声成分,并通过设置合适的阈值对小波系数进行收缩,保留主要信息的同时,去除噪声。

%基于小波变换的阈值收缩法去噪算法
clear
clc
I=imread('nana.png');
X = im2double(I);                           % 转换成双精度类型
x_noise = noise(X, 'gaussian', 0.01);       % 加入高斯噪声
% 提取三个通道信息
xr = x_noise(:, :, 1);  % R通道
xg = x_noise(:, :, 2);  % G通道
xb = x_noise(:, :, 3);  % B通道
% 估计三个通道的阈值
[Cr, Sr] = wavedec2(xr, 2, 'sym4');
[Cg, Sg] = wavedec2(xg, 2, 'sym4');
[Cb, Sb] = wavedec2(xb, 2, 'sym4');
x_r = den(xr, 'sym4', 2);
x_g = den(xg, 'sym4', 2);
x_b = den(xb, 'sym4', 2);
x = cat(3, x_r, x_g, x_b);
subplot(121)
imshow(x_noise);title('加噪图像');
subplot(122)
imshow(x);title('去噪后');

2.基于小波变换的模极大值法去噪算法

模极大值法通过分析小波变换中信号的极大值点,提取信号的结构特征,进而有效去除噪声,并且能保留信号的边缘信息。

%基于小波变换的模极大值法去噪算法
clear
clc
I = imread('nana.png', 'png');        % 读入图像
X = im2double(I);                           % 转换成双精度类型
x_noise = noise(X,'gaussian', 0.01);       % 加入高斯噪声
% 提取三个通道信息
xr = x_noise(:, :, 1);                      % R通道
xg = x_noise(:, :, 2);                      % G通道
xb = x_noise(:, :, 3);                      % B通道
%基于小波变换的模极大值法
[Cr, Sr] = wavedec2(xr, 2, 'sym4');
[Cg, Sg] = wavedec2(xg, 2, 'sym4');
[Cb, Sb] = wavedec2(xb, 2, 'sym4');
thr_lvd_r = momax(Cr, Sr);         % R通道局部阈值
thr_lvd_g = momax(Cg, Sg);         % G通道局部阈值
thr_lvd_b = momax(Cb, Sb);         % B通道局部阈值
x_soft_lvd_r = wdenoise(xr, 'lvd', 's', thr_lvd_r, 'sym4', 2);
x_soft_lvd_g = wdenoise(xg, 'lvd', 's', thr_lvd_g, 'sym4', 2);
x_soft_lvd_b = wdenoise(xb, 'lvd', 's', thr_lvd_b, 'sym4', 2);
x_soft_lvd = cat(3, x_soft_lvd_r, x_soft_lvd_g, x_soft_lvd_b); subplot(121)
imshow(x_noise);    title('噪声图像');
subplot(122)
imshow(x_soft_lvd); title('模极大值去噪');

图片

3.基于小波变换的相关法去噪算法

该算法基于小波变换后不同尺度信号间的相关性,利用噪声和信号的统计特性来提取信号,达到去噪的目的。

%基于小波变换的相关法去噪算法
clear
clc
I = imread('nana.png', 'png');        % 读入图像
X = im2double(I);                           % 转换成双精度类型
x_noise = noise(X,'gaussian', 0.01);       % 加入高斯噪声
% 提取三个通道信息
xr = x_noise(:, :, 1);                      % R通道
xg = x_noise(:, :, 2);                      % G通道
xb = x_noise(:, :, 3);                      % B通道
%   小波变换去相关计算阈值
thr_r = xiangguan(xr); % R通道全局阈值
thr_g = xiangguan(xg); % G通道全局阈值
thr_b = xiangguan(xb); % B通道全局阈值
x_soft_r = wdenoise(xr, 'gbl', 's', thr_r, 'sym4', 2);
x_soft_g = wdenoise(xg, 'gbl', 's', thr_g, 'sym4', 2);
x_soft_b = wdenoise(xb, 'gbl', 's', thr_b, 'sym4', 2);
x_soft = cat(3, x_soft_r, x_soft_g, x_soft_b);  
subplot(121)
imshow(x_noise);    title('噪声图像');
subplot(122)
imshow(x_soft); title('相关法去噪');

图片

4.改进基于离散余弦变换的小波去噪算法

在传统小波去噪的基础上,结合离散余弦变换(DCT)的优势,对信号进行进一步处理,以提高去噪效果,特别适用于周期性或具有强局部特征的信号


%改进基于离散余弦变换的小波去噪算法
clear
clc
init = 2055615866;
randn('seed',init);
img = imread('nana.png');
X = double(img);
x = X + 10*randn(size(X));%噪声
x = uint8(x);
[h,w,c] = size(x);
R_channel = x(:,:,1);
G_channel = x(:,:,2);
B_channel = x(:,:,3);outimg1 = block_dct(R_channel,8,3);
outimg2 = block_dct(G_channel,8,3);
outimg3 = block_dct(B_channel,8,3);
[h,w] = size(outimg1)
outimg = zeros([h,w,3]);
outimg(:,:,1) = outimg1;
outimg(:,:,2) = outimg2;
outimg(:,:,3) = outimg3;subplot(121)
imshow(x);
xlabel('噪声图像');
subplot(122)
imshow(uint8(outimg))
xlabel('分块DCT去噪');

图片

5.基于最大熵原理的小波去噪算法

通过引入最大熵原理,该算法在去噪过程中对信号进行最优估计,保持信号的信息量最大化,从而实现平衡信号和噪声的去除

%基于最大熵原理的小波去噪算法
clear
clc
I = imread('nana.png');  
X = rgb2gray(I);  
X=imnoise(X,'salt & pepper',0.05);%加入椒盐噪声
vHist=imhist(X);                                      %得到灰度直方图
[m,n]=size(X);  
p=vHist(find(vHist>0))/(m*n); %求每一不为零的灰度值的概率  
Pt=cumsum(p);   %计算出选择不同t值时,A区域的概率  
Ht=-cumsum(p.*log(p)); %计算出选择不同t值时,A区域的熵  
HL=-sum(p.*log(p));   %计算出全图的熵  
Yt=log(Pt.*(1-Pt)+eps)+Ht./(Pt+eps)+(HL-Ht)./(1-Pt+eps);    %计算出选择不同t值时,判别函数的值  
th=max(Yt);    % th即为最佳阈值  
[height width]=size(X);
X=im2double(X);
Y1=double(X);
A=imnoise(X,'salt & pepper',0.05);%加入椒盐噪声
wname='sym3 ';
n=3;
[c,s]=wavedec2(A,n,wname);
for i=1:3
step(i)=s((i+1),1)*s((i+1),2);  %得到高频每层分解系数的长度
end
num(1,1)=s(1,1)*s(1,2)+1; %获取各层各高频分量在c向量中的坐标  H|V|D
num(1,2)=num(1,1)+s(2,1)*s(2,2);
num(1,3)=num(1,2)+s(2,1)*s(2,2);
num(2,1)=num(1,3)+s(2,1)*s(2,2);
num(2,2)=num(2,1)+s(3,1)*s(3,2);
num(2,3)=num(2,2)+s(3,1)*s(3,2);
num(3,1)=num(2,3)+s(3,1)*s(3,2);
num(3,2)=num(3,1)+s(4,1)*s(4,2);
num(3,3)=num(3,2)+s(4,1)*s(4,2);
%m=0.02;
C=c;
Y=c;
for i=1:3
[H,V,D]=detcoef2('a',c,s,i);%提取第i层各高频系数,提取二维信号小波分解的细节分量
B=[H V D];
[L,T]=size(B);
for k=1:Lfor w=1:Tsigma=median(abs(B(k,w)))/0.6745;%噪声方差end
end
ch=c(1,num(4-i,1):num(4-i,3)+step(4-i)-1);%确定高频系数的范围,为下一步阈值处理和更新高频系数做准备
chl=length(ch);
for j=1:chlif abs(ch(j))>=thch(j)=sign(ch(j))*(abs(ch(j))-th);%软阈值处理函数elsech(j)=0;end
end
C(1,num(4-i,1):num(4-i,3)+step(4-i)-1)=ch(1,1:chl);   
end
X0=waverec2(C,s,wname);
figure
subplot(121);imshow(X);title('加噪图像')
subplot(122);imshow(X0,[]);title('最大熵法去噪后图像')

图片

6.基于主成分分析的小波去噪算法

主成分分析(PCA)被用来提取信号的主要特征,结合小波变换可以有效分离信号和噪声,尤其适用于多维数据的去噪任务。

%基于主成分分析的小波去噪算法
clear;
clc;
A = imread('nana.png');            %读取图像  
A=imnoise(A,'salt & pepper',0.05);%加入椒盐噪声
subplot(121)
imshow(A); title('加噪图像');
k = PCA_Process(A);                      
subplot(122)
imshow(k,[]);title('去噪图片'); 

图片

7.BM3D去噪算法

%BM3D去噪算法
clear
clc
A = imread('nana.png');            %读取图像  
A=rgb2gray(A);
A=imnoise(A,'salt & pepper',0.05);%加入椒盐噪声
subplot(121)
imshow(A); title('加噪图像');
k = BM3D(A);                      
subplot(122)
imshow(k,[]);title('去噪图片'); 

免费获取完整代码:

Matlab数字信号处理——基于改进小波变换的图像去噪方法(7种去噪算法)

最后:

小编会不定期发布相关设计内容包括但不限于如下内容:信号处理、通信仿真、算法设计、matlab appdesigner,gui设计、simulink仿真......希望能帮到你!

相关文章:

Matlab数字信号处理——基于改进小波变换的图像去噪方法(7种去噪算法)

1.基于小波变换的阈值收缩法去噪 该方法利用小波变换分离出信号中的噪声成分,并通过设置合适的阈值对小波系数进行收缩,保留主要信息的同时,去除噪声。 %基于小波变换的阈值收缩法去噪算法 clear clc Iimread(nana.png); X im2double(I); …...

leetcode hot100【LeetCode 70. 爬楼梯】java实现

LeetCode 70. 爬楼梯 题目描述 假设你正在爬楼梯。需要 n 阶你才能到达楼顶。 每次你可以爬 1 或 2 个台阶。你有多少种不同的方法可以爬到楼顶呢? 注意: 给定 n 是一个正整数。 示例 1: 输入:n 2 输出:2 解释&…...

Java异常2

异常抛出的两种形式: 系统隐式抛出;int n10/0;—隐式抛出一个异常;手动抛出异常:throw new Exception(); import java.util.InputMismatchException; import java.util.Scanner;public class Main {public static void main(Str…...

2024熵密杯初始题2

问题简要: 已知 counter 0x7501E6EA token 0xF4CE927C79B616E8E8F7223828794EEDF9B16591AE572172572D51E135E0D21A 伪造出另一个可以通过验证的counter和token。 给出token生成及验证代码如下: import binascii from gmssl import sm3# 读取HMAC ke…...

echarts属性之title

title 标题组件,包含主标题和副标题。 在 ECharts 2.x 中单个 ECharts 实例最多只能拥有一个标题组件。但是在 ECharts 3 中可以存在任意多个标题组件,这在需要标题进行排版,或者单个实例中的多个图表都需要标题时会比较有用。 例如下面不…...

VUE errolog, vue 错误集

I) installation As to command “npm install” on cmd or powershell, we must execute it under the program folder...

驱动开发系列13 - Linux tasklet用法介绍

一:概述 Tasklet 是 Linux 内核中的一种轻量级任务调度机制,通常用于在中断上下文中执行短小的任务。它们在软中断处理过程中被调用,允许将较长的处理工作延后到一个较低优先级的上下文中,以减少中断处理的延迟。Tasklet 的使用可以帮助开发者更好地管理系统资源,提高性能…...

redis实现分布式锁,go实现完整code

Redis分布式锁 Redis 分布式锁是一种使用 Redis 数据库实现分布式锁的方式,可以保证在分布式环境中同一时间只有一个实例可以访问共享资源。 实现机制 以下是实现其加锁步骤: 获取锁 在 Redis 中,一个相同的key代表一把锁。是否拥有这把锁&…...

解析日期、编码

解析日期 这里指的是将字符串或者object类型的日期,转换成panda或python的日期类型。 主要的是dtype的变化:object / str —> datetime64[ns] # modules well use import pandas as pd import numpy as np import seaborn as sns import datetime# …...

【Qt】QApplication::restoreOverrideCursor():恢复鼠标光标到原始状态的用法解析

restoreOverrideCursor() 是 Qt 中 QApplication 类提供的一个静态函数,用来恢复鼠标光标到应用程序之前设置的状态。 在 Qt 中,你可以使用 QApplication::setOverrideCursor() 来临时更改鼠标光标的外观。例如,当执行一些耗时操作时&#x…...

重生之“我打数据结构,真的假的?”--2.单链表(无习题)

C语言中的单链表总结 单链表是一种基础的数据结构,广泛应用于C语言编程中。它由节点组成,每个节点包含数据和指向下一个节点的指针。单链表的优点在于动态内存分配和高效的插入与删除操作。本文将详细探讨单链表的定义、基本操作、应用场景以及相关示例…...

【有啥问啥】视频插帧算法技术原理详解

视频插帧算法技术原理详解 引言 视频插帧(Video Interpolation)技术,作为计算机视觉领域的一项重要应用,旨在通过算法手段在已有的视频帧之间插入额外的帧,从而提升视频的帧率,使其看起来更加流畅。这一技…...

Leetcode148,109以及二者的合并 -> Tencent面试算法题 - 无序双向链表转BST

根源简述 这道题是腾讯在2024/8/30考的一道面试题,整体来说,难度不大,就是代码量稍稍有点儿大,让我们一起来看一下吧 题目描述 整数无序双向链表能否转BST(二叉搜索树),如果能,怎么转…...

【蓝桥杯选拔赛真题77】python计算小球 第十五届青少年组蓝桥杯python选拔赛真题 算法思维真题解析

目录 python计算小球 一、题目要求 1、编程实现 2、输入输出 二、算法分析 三、程序编写 四、程序说明 五、运行结果 六、考点分析 七、 推荐资料 1、蓝桥杯比赛 2、考级资料 3、其它资料 python计算小球 第十五届蓝桥杯青少年组python比赛选拔赛真题 一、题目要…...

获取Hive表备注

DESCRIBE EXTENDED 表名;先获取Detailed Table Information这行的data_type字段数据,进行正则匹配,拿到表备注,如下: String str ReUtil.get("parameters:\\{(?!.*?\\().*transient_lastDdlTime.*?comment(.*?)\\}&quo…...

10.30学习

一、科学计数法 C语言中的科学计数法主要用于表示非常大或非常小的浮点数,它遵循以下格式: 1. E或e表示指数: 科学计数法中的E或e用来表示“指数”(Exponent)。例如, 1.23e4 或 1.23E4 表示 1.23 * 10^4…...

什么是栈溢出

一、什么是栈溢出 栈溢出(Stack Overflow)就是指在程序运行过程中,往栈里存放的数据超过了栈所能容纳的最大容量,从而导致程序出现异常行为的情况。这就好比一个箱子本来只能装一定数量的物品,硬要往里面塞更多的东西&…...

在linux中arm-linux-gcc和/usr/bin/gcc有啥区别

在Linux中,arm-linux-gcc和/usr/bin/gcc都是编译器,但它们之间存在显著的区别,主要体现在编译目标、使用场景以及编译生成的二进制文件的可执行性上。而软链接则是Linux文件系统中的一种特殊文件类型,用于创建一个文件的别名。 a…...

常用环境部署(二十二)——MySQL的数据库迁移到另一个机器上

1、导出原数据库的数据 mysqldump -u [用户名] -p[密码] [数据库名] > database_dump.sql 命令示例: mysqldump -u root -p123456 wd > /opt/wd.sql 2、在新机器上创建数据库 mysql -u [用户名] -p -e "CREATE DATABASE [新数据库名]" 命令示…...

两台主机只能单方向ping通

可能性比较大的原因时ping不通的那台主机安装了个人防火墙。 在共享上网的机器中,出于安全考虑,大部分主机都安装个人防火墙软件。几乎所有个人防火墙软件默认不允许其他机器ping本机。一般的做法是将来自外部的ICMP请求报文滤掉,对本机出去的…...

XML Group端口详解

在XML数据映射过程中,经常需要对数据进行分组聚合操作。例如,当处理包含多个物料明细的XML文件时,可能需要将相同物料号的明细归为一组,或对相同物料号的数量进行求和计算。传统实现方式通常需要编写脚本代码,增加了开…...

【JavaEE】-- HTTP

1. HTTP是什么? HTTP(全称为"超文本传输协议")是一种应用非常广泛的应用层协议,HTTP是基于TCP协议的一种应用层协议。 应用层协议:是计算机网络协议栈中最高层的协议,它定义了运行在不同主机上…...

Debian系统简介

目录 Debian系统介绍 Debian版本介绍 Debian软件源介绍 软件包管理工具dpkg dpkg核心指令详解 安装软件包 卸载软件包 查询软件包状态 验证软件包完整性 手动处理依赖关系 dpkg vs apt Debian系统介绍 Debian 和 Ubuntu 都是基于 Debian内核 的 Linux 发行版&#xff…...

Android15默认授权浮窗权限

我们经常有那种需求,客户需要定制的apk集成在ROM中,并且默认授予其【显示在其他应用的上层】权限,也就是我们常说的浮窗权限,那么我们就可以通过以下方法在wms、ams等系统服务的systemReady()方法中调用即可实现预置应用默认授权浮…...

UR 协作机器人「三剑客」:精密轻量担当(UR7e)、全能协作主力(UR12e)、重型任务专家(UR15)

UR协作机器人正以其卓越性能在现代制造业自动化中扮演重要角色。UR7e、UR12e和UR15通过创新技术和精准设计满足了不同行业的多样化需求。其中,UR15以其速度、精度及人工智能准备能力成为自动化领域的重要突破。UR7e和UR12e则在负载规格和市场定位上不断优化&#xf…...

【JVM】Java虚拟机(二)——垃圾回收

目录 一、如何判断对象可以回收 (一)引用计数法 (二)可达性分析算法 二、垃圾回收算法 (一)标记清除 (二)标记整理 (三)复制 (四&#xff…...

Golang——6、指针和结构体

指针和结构体 1、指针1.1、指针地址和指针类型1.2、指针取值1.3、new和make 2、结构体2.1、type关键字的使用2.2、结构体的定义和初始化2.3、结构体方法和接收者2.4、给任意类型添加方法2.5、结构体的匿名字段2.6、嵌套结构体2.7、嵌套匿名结构体2.8、结构体的继承 3、结构体与…...

群晖NAS如何在虚拟机创建飞牛NAS

套件中心下载安装Virtual Machine Manager 创建虚拟机 配置虚拟机 飞牛官网下载 https://iso.liveupdate.fnnas.com/x86_64/trim/fnos-0.9.2-863.iso 群晖NAS如何在虚拟机创建飞牛NAS - 个人信息分享...

无需布线的革命:电力载波技术赋能楼宇自控系统-亚川科技

无需布线的革命:电力载波技术赋能楼宇自控系统 在楼宇自动化领域,传统控制系统依赖复杂的专用通信线路,不仅施工成本高昂,后期维护和扩展也极为不便。电力载波技术(PLC)的突破性应用,彻底改变了…...

Linux 内存管理调试分析:ftrace、perf、crash 的系统化使用

Linux 内存管理调试分析:ftrace、perf、crash 的系统化使用 Linux 内核内存管理是构成整个内核性能和系统稳定性的基础,但这一子系统结构复杂,常常有设置失败、性能展示不良、OOM 杀进程等问题。要分析这些问题,需要一套工具化、…...