【植物识别】Python+深度学习+人工智能+CNN卷积神经网络+算法模型训练+TensorFlow
一、介绍
植物识别系统,使用Python作为主要编程语言开发,通过收集常见的6中植物树叶(‘广玉兰’, ‘杜鹃’, ‘梧桐’, ‘樟叶’, ‘芭蕉’, ‘银杏’)图片作为数据集,然后使用TensorFlow搭建ResNet50算法网络模型,通过对数据集进行处理后进行模型迭代训练,得到一个识别精度较高的H5模型文件。并基于Django框架开发网页端平台,实现用户在网页上上传一张植物树叶图片识别其名称。
二、系统效果图片展示



三、演示视频 and 完整代码 and 安装
地址:https://www.yuque.com/ziwu/yygu3z/yt0dsez3zk2dxs66
四、TensorFlow介绍
TensorFlow是一个开源的机器学习框架,由Google Brain Team开发,广泛用于计算机视觉、自然语言处理等领域。在图像识别方面,TensorFlow提供了强大的工具和API,使得构建和训练深度学习模型变得简单高效。
TensorFlow在图像识别的应用主要体现在能够通过训练深度神经网络模型来识别和分类图像中的对象。例如,使用MNIST数据集识别手写数字,或者使用CIFAR-10数据集识别多种物体类别。
以下是一段使用TensorFlow进行图像识别的简单示例代码:
import tensorflow as tf# 加载数据集
mnist = tf.keras.datasets.mnist
(x_train, y_train), (x_test, y_test) = mnist.load_data()# 标准化数据
x_train, x_test = x_train / 255.0, x_test / 255.0# 构建模型
model = tf.keras.models.Sequential([tf.keras.layers.Flatten(input_shape=(28, 28)),tf.keras.layers.Dense(128, activation='relu'),tf.keras.layers.Dropout(0.2),tf.keras.layers.Dense(10)
])# 编译模型
model.compile(optimizer='adam',loss=tf.keras.losses.SparseCategoricalCrossentropy(from_logits=True),metrics=['accuracy'])# 训练模型
model.fit(x_train, y_train, epochs=5)# 评估模型
model.evaluate(x_test, y_test, verbose=2)
这段代码首先加载了MNIST手写数字数据集,然后构建了一个简单的神经网络模型,包括一个Flatten层、一个Dense层和一个Dropout层,最后是输出层。模型编译后,使用Adam优化器和稀疏分类交叉熵损失函数进行训练,并在测试集上进行评估。
相关文章:
【植物识别】Python+深度学习+人工智能+CNN卷积神经网络+算法模型训练+TensorFlow
一、介绍 植物识别系统,使用Python作为主要编程语言开发,通过收集常见的6中植物树叶(‘广玉兰’, ‘杜鹃’, ‘梧桐’, ‘樟叶’, ‘芭蕉’, ‘银杏’)图片作为数据集,然后使用TensorFlow搭建ResNet50算法网络模型&am…...
快讯,Flutter PC 多窗口新进展,已在 Ubuntu/Canonical 展示
相信 Flutter 开发者对于 Flutter PC 多窗口的支持一直是「望眼欲穿」,而根据 #142845 相关内容展示, 在上月 27 号的 Ubuntu 峰会,Flutter 展示了多窗口相关进展。 事实上 Ubuntu 和 Flutter 的进一步合作关系应该是在 2021 年就开始了&…...
BigDecimal 详解
阿里巴巴 Java 开发手册》中提到:“为了避免精度丢失,可以使用 BigDecimal 来进行浮点数的运算”。 浮点数的运算竟然还会有精度丢失的风险吗?确实会! 示例代码: float a 2.0f - 1.9f; float b 1.8f - 1.7f; Syst…...
ESP-HaloPanel:用 ESP32-C2 打造超低成本智能家居面板
项目简介 在生活品质日益提升的今天,智能家居系统已经走进了千家万户,并逐渐成为现代生活的一部份。与此同时,一款设计精致、体积轻盈、操作简便的全屋智能家居控制面板,已经成为众多家庭的新宠。这种高效、直观的智能化的解决方…...
CSS3新增盒子属性(三)
1、CSS3新增盒子属性 1.1 box-sizing 设置盒子的大小。 content-box:设置内容区的大小;border-box:设置盒子的总大小。 <!DOCTYPE html> <html lang"zh-CN"><head><meta charset"UTF-8"><t…...
Manus在虚拟现实仿真模拟中的应用案例分享
Manus虚拟现实手套作为一种高精度的人机交互设备,在仿真模拟领域展现出了巨大的应用潜力。通过提供实时、准确的手指动作捕捉数据,Manus手套为多个行业带来了前所未有的仿真体验,推动了技术发展和应用创新。 技术特点 1. 高精度手指跟踪 Ma…...
大数据-201 数据挖掘 机器学习理论 - 决策树 局部最优 剪枝 分裂 二叉分裂
点一下关注吧!!!非常感谢!!持续更新!!! 目前已经更新到了: Hadoop(已更完)HDFS(已更完)MapReduce(已更完&am…...
Scala 的trait
在Scala中,trait是一种特殊概念。trait可以作为接口,同时也可以定义抽象方法。类使用extends继承trait,在Scala中,无论继承类还是继承trait都用extends关键字。在Scala中, 类继承trait后必须实现其中的抽象方法&#x…...
vue3官方示例-简单的 markdown 编辑器。
官方示例不能直接粘贴使用,故自己补了些代码。方便初学者学习,节省时间,提高学习效率。 1、html代码: <!doctype html> <html lang"en"> <head><meta charset"UTF-8"><meta nam…...
Linux标准I/O库汇总整理
Linux标准I/O库(Standard I/O Library)是C标准库的一部分,提供了一系列用于文件输入输出的高级接口。这些接口通常比低级别的系统调用更易于使用,但也可能带来额外的性能开销。下面是Linux标准I/O库的汇总整理,包括常见…...
BGP路由优选+EVPN
BGP 的路由优选规则是一套多步决策链,用来确定在多个可行路由中选择最优的路由。BGP 是一种路径向量协议,通过这些优选规则,网络管理员可以控制数据流量的流向,确保网络的稳定性和效率。下面以一个实例来详细说明 BGP 的优选规则及…...
牛客练习赛131(未补)
A-小H学语文 题意:木板数量为m,想让mmh(min)最大,找出这几块木板 分析:让木板从大到小排序,找到最大的体积,将之前的木板按序列输出 代码: #include<bits/stdc.h> using n…...
功能更新丨AI黑科技助燃VR全景新势能
随着VR全景市场需求不断扩大, 为更好地赋能合作商业务发展, 酷雷曼积极推进产品技术迭代, 融合VR虚拟现实和AI人工智能, 重磅推出6大AI黑科技, 让VR全景内容更丰富、创作更加高效! 新功能怎么用&#…...
JavaCV学习第一课
1、 JavaCV [1] 是一款基于JavaCPP [2]调用方式(JNI的一层封装),由多种开源计算机视觉库组成的包装库,封装了包含FFmpeg、OpenCV、tensorflow、caffe、tesseract、libdc1394、OpenKinect、videoInput和ARToolKitPlus等在内的计算…...
Java第二阶段---16字符串---第一节 String
1.特性介绍 String 类位于 java.lang 包中,无需引入,直接使用即可。 String 类是由 final 修饰的,表示String 类是一个最终类,不能够被继承。 String 类构建的对象不可再被更改 示例 package com.cyx.string;public class Ex…...
<十六>Ceph mon 运维
Ceph 集群有故障了,你执行的第一个运维命令是什么? 我猜测是ceph -s 。无论执行的第一个命令是什么,都肯定是先检查Mon。 在开始之前我们有必要介绍下Paxos协议,毕竟Mon就是靠它来实现数据唯一性。 一: Paxos 协议 1…...
【网络安全初识】——互联网发展史
个人主页:兜里有颗棉花糖 欢迎 点赞👍 收藏✨ 留言✉ 加关注💓本文由 兜里有颗棉花糖 原创 收录于专栏【网络安全】 本专栏旨在分享学习网络安全的一些学习笔记,欢迎大家在评论区交流讨论💌 ipconfig:显示当…...
Windows和Linux内存共享机制
Windows和Linux内存共享机制 引言1.Windows写操作读操作 2.Linux写操作读操作 3.Shell使用 tmux 运行 write 和 read说明 引言 在嵌入式开发领域,内存共享机制作为不同操作系统间实现高效数据交换的重要手段,尤其在对实时性和可靠性要求极高的环境中更为…...
windows@命令行中获取环境变量取值不展开取值(原值)
文章目录 命令行中获取环境变量取值获取不展开的值具体实现注解 封装为函数版本1版本2 命令行中获取环境变量取值 这里主要讨论获取未展开的值本来获取未展开的值应该作为默认选项,至少有合适的api方便直接调用,但是不知道微软怎么想的,让这个任务变得不直接 获取不展开的值 …...
如何找到多平台内容爆款进行批量复刻?
为了进一步扩大品牌社媒影响力,在消费者做决策的时候,能够第一时间出现在首选位置。持续在抖音、小红书、b站、公众号等各大社媒平台,产生连续的、正向的高质量品牌曝光,是非常重要的。如何进行这种多平台品牌影响力的提升呢&…...
SpringBoot-17-MyBatis动态SQL标签之常用标签
文章目录 1 代码1.1 实体User.java1.2 接口UserMapper.java1.3 映射UserMapper.xml1.3.1 标签if1.3.2 标签if和where1.3.3 标签choose和when和otherwise1.4 UserController.java2 常用动态SQL标签2.1 标签set2.1.1 UserMapper.java2.1.2 UserMapper.xml2.1.3 UserController.ja…...
论文解读:交大港大上海AI Lab开源论文 | 宇树机器人多姿态起立控制强化学习框架(二)
HoST框架核心实现方法详解 - 论文深度解读(第二部分) 《Learning Humanoid Standing-up Control across Diverse Postures》 系列文章: 论文深度解读 + 算法与代码分析(二) 作者机构: 上海AI Lab, 上海交通大学, 香港大学, 浙江大学, 香港中文大学 论文主题: 人形机器人…...
css实现圆环展示百分比,根据值动态展示所占比例
代码如下 <view class""><view class"circle-chart"><view v-if"!!num" class"pie-item" :style"{background: conic-gradient(var(--one-color) 0%,#E9E6F1 ${num}%),}"></view><view v-else …...
学校时钟系统,标准考场时钟系统,AI亮相2025高考,赛思时钟系统为教育公平筑起“精准防线”
2025年#高考 将在近日拉开帷幕,#AI 监考一度冲上热搜。当AI深度融入高考,#时间同步 不再是辅助功能,而是决定AI监考系统成败的“生命线”。 AI亮相2025高考,40种异常行为0.5秒精准识别 2025年高考即将拉开帷幕,江西、…...
C++:多态机制详解
目录 一. 多态的概念 1.静态多态(编译时多态) 二.动态多态的定义及实现 1.多态的构成条件 2.虚函数 3.虚函数的重写/覆盖 4.虚函数重写的一些其他问题 1).协变 2).析构函数的重写 5.override 和 final关键字 1&#…...
腾讯云V3签名
想要接入腾讯云的Api,必然先按其文档计算出所要求的签名。 之前也调用过腾讯云的接口,但总是卡在签名这一步,最后放弃选择SDK,这次终于自己代码实现。 可能腾讯云翻新了接口文档,现在阅读起来,清晰了很多&…...
嵌入式学习之系统编程(九)OSI模型、TCP/IP模型、UDP协议网络相关编程(6.3)
目录 一、网络编程--OSI模型 二、网络编程--TCP/IP模型 三、网络接口 四、UDP网络相关编程及主要函数 编辑编辑 UDP的特征 socke函数 bind函数 recvfrom函数(接收函数) sendto函数(发送函数) 五、网络编程之 UDP 用…...
微服务通信安全:深入解析mTLS的原理与实践
🔥「炎码工坊」技术弹药已装填! 点击关注 → 解锁工业级干货【工具实测|项目避坑|源码燃烧指南】 一、引言:微服务时代的通信安全挑战 随着云原生和微服务架构的普及,服务间的通信安全成为系统设计的核心议题。传统的单体架构中&…...
LangChain【6】之输出解析器:结构化LLM响应的关键工具
文章目录 一 LangChain输出解析器概述1.1 什么是输出解析器?1.2 主要功能与工作原理1.3 常用解析器类型 二 主要输出解析器类型2.1 Pydantic/Json输出解析器2.2 结构化输出解析器2.3 列表解析器2.4 日期解析器2.5 Json输出解析器2.6 xml输出解析器 三 高级使用技巧3…...
Oracle实用参考(13)——Oracle for Linux物理DG环境搭建(2)
13.2. Oracle for Linux物理DG环境搭建 Oracle 数据库的DataGuard技术方案,业界也称为DG,其在数据库高可用、容灾及负载分离等方面,都有着非常广泛的应用,对此,前面相关章节已做过较为详尽的讲解,此处不再赘述。 需要说明的是, DG方案又分为物理DG和逻辑DG,两者的搭建…...
