timm使用笔记
timm(Timm is a model repository for PyTorch)是一个 PyTorch 原生实现的计算机视觉模型库。它提供了预训练模型和各种网络组件,可以用于各种计算机视觉任务,例如图像分类、物体检测、语义分割等等。timm(库提供了预训练模型、模型构建块和模型训练的实用工具。timm库可以帮助开发者快速构建和训练深度学习模型,同时支持多种图像分类、分割和检测任务,特别是结合torch和torchvision的使用,对你训练模型,事半功倍。
timm 的特点如下:
- PyTorch 原生实现:timm 的实现方式与 PyTorch 高度契合,开发者可以方便地使用 PyTorch 的 API 进行模型训练和部署。
- 轻量级的设计:timm 的设计以轻量化为基础,根据不同的计算机视觉任务,提供了多种轻量级的网络结构。
- 大量的预训练模型:timm 提供了大量的预训练模型,可以直接用于各种计算机视觉任务。
- 多种模型组件:timm 提供了各种模型组件,如注意力模块、正则化模块、激活函数等等,这些模块都可以方便地插入到自己的模型中。
- 高效的代码实现:timm 的代码实现高效并且易于使用。
需要注意的是,timm 是一个社区驱动的项目,它由计算机视觉领域的专家共同开发和维护。在使用时需要遵循相关的使用协议。
1. 安装
pip install timm
2. 准备数据集
首先,我们需要准备CIFAR-10数据集。我们可以使用torchvision库来下载和加载数据集:
import torch
import torchvision
import torchvision.transforms as transforms# 数据预处理transform = transforms.Compose([transforms.RandomHorizontalFlip(),transforms.RandomCrop(32, padding=4),transforms.ToTensor(),transforms.Normalize((0.5, 0.5, 0.5), (0.5, 0.5, 0.5))
])# 加载CIFAR-10数据集trainset = torchvision.datasets.CIFAR10(root='./data', train=True, download=True, transform=transform)
trainloader = torch.utils.data.DataLoader(trainset, batch_size=100, shuffle=True, num_workers=2)
testset = torchvision.datasets.CIFAR10(root='./data', train=False, download=True, transform=transform)
testloader = torch.utils.data.DataLoader(testset, batch_size=100, shuffle=False, num_workers=2)
3. 加载预训练模型
timm库提供了多个预训练模型,这些模型可以在ImageNet等数据集上进行预训练,也可以在其他数据集上进行微调。
加载预训练模型的代码非常简单,下面我们加载需要的预训练模型权重:
import timmm = timm.create_model('vgg16', pretrained=True)
m.eval()
上面代码就会创建一个VGG-16的预训练模型。
3. 训练模型
现在我们可以开始训练模型。我们将使用交叉熵损失函数和Adam优化器:
import torch.optim as optimcriterion = torch.nn.CrossEntropyLoss()optimizer = optim.Adam(model.parameters(), lr=0.001)# 训练模型
num_epochs = 10device = torch.device("cuda:0" if torch.cuda.is_available() else "cpu")
model.to(device)for epoch in range(num_epochs):running_loss = 0.0for i, data in enumerate(trainloader, 0):inputs, labels = datainputs, labels = inputs.to(device), labels.to(device)optimizer.zero_grad()outputs = model(inputs)loss = criterion(outputs, labels)loss.backward()optimizer.step()running_loss += loss.item()print(f"Epoch {epoch + 1}, Loss: {running_loss / (i + 1)}")
4. 测试模型
训练完成后,我们可以使用测试数据集评估模型的性能:
correct = 0
total = 0model.eval()with torch.no_grad():for data in testloader:images, labels = dataimages, labels = images.to(device), labels.to(device)outputs = model(images)_, predicted = torch.max(outputs.data, 1)total += labels.size(0)correct += (predicted == labels).sum().item()print(f"Accuracy on test set: {100 * correct / total}%")
5. 缓存路径
一般来说,在 Python 环境中,可能会存放在以下常见位置:
- Windows:
C:\Users\[用户名]\.cache\torch\hub\checkpoints
- Linux:
~/.cache/torch/hub/checkpoints
- macOS:
~/Library/Caches/torch/hub/checkpoints
参考文献
【计算机视觉 | Pytorch】timm 包的具体介绍和图像分类案例(含源代码)-CSDN博客
pytorch学习笔记——timm库-CSDN博客
相关文章:
timm使用笔记
timm(Timm is a model repository for PyTorch)是一个 PyTorch 原生实现的计算机视觉模型库。它提供了预训练模型和各种网络组件,可以用于各种计算机视觉任务,例如图像分类、物体检测、语义分割等等。timm(库提供了预训…...

android浏览器源码 可输入地址或关键词搜索 android studio 2024 可开发可改地址
Android 浏览器是一种运行在Android操作系统上的应用程序,主要用于访问和查看互联网内容。以下是关于Android浏览器的详细介绍: 1. 基本功能 Android浏览器提供了用户浏览网页的基本功能,如: 网页加载:支持加载静态…...

贪心算法入门(一)
1.什么是贪心算法? 贪心算法是一种解决问题的策略,它将复杂的问题分解为若干个步骤,并在每一步都选择当前最优的解决方案,最终希望能得到全局最优解。这种策略的核心在于“最优”二字,意味着我们追求的是以最少的时间和…...
C# ref和out 有什么区别,分别用在那种场景
在C#中,ref和out都是用于按引用传递参数的关键字,但它们有一些细微的差别和使用场景。 ref 关键字 ref 关键字用于按引用传递参数。这意味着当你将一个变量作为参数传递给一个方法时,你不是传递变量的值,而是传递变量的引用。因…...

TikTok直播专线:提升直播效果和体验
作为当今全球最受欢迎的社交媒体平台之一,TikTok为商家提供了无限的商机和市场。然而,商家在使用TikTok时也面临着许多挑战,如网络延迟、直播中断以及账号被封等问题。TikTok直播专线旨在为商家提供高速稳定的网络连接,助力他们在…...

由浅入深逐步理解spring boot中如何实现websocket
实现websocket的方式 1.springboot中有两种方式实现websocket,一种是基于原生的基于注解的websocket,另一种是基于spring封装后的WebSocketHandler 基于原生注解实现websocket 1)先引入websocket的starter坐标 <dependency><grou…...

1-petalinux 问题记录-根文件系统分区问题
在MPSOC上使用SD第二分区配置根文件系统的时候,需要选择对应的bootargs,但是板子上有emmc和sd两个区域,至于配置哪一种mmcblk0就出现了问题,从vivado中的BlockDesign和MLK XCZU2CG原理图来看的话,我使用的SD卡应该属于…...

微信小程序的上拉刷新与下拉刷新
效果图如下: 上拉刷新 与 下拉刷新 代码如下: joked.wxml <scroll-view class"scroll" scroll-y refresher-enabled refresher-default-style"white" bindrefresherrefresh"onRefresh" refresher-triggered&qu…...

【大语言模型】ACL2024论文-05 GenTranslate: 大型语言模型是生成性多语种语音和机器翻译器
【大语言模型】ACL2024论文-05 GenTranslate: 大型语言模型是生成性多语种语音和机器翻译器 GenTranslate: 大型语言模型是生成性多语种语音和机器翻译器 目录 文章目录 【大语言模型】ACL2024论文-05 GenTranslate: 大型语言模型是生成性多语种语音和机器翻译器目录摘要研究背…...

KPRCB结构之ReadySummary和DispatcherReadyListHead
ReadySummary: Uint4B DispatcherReadyListHead : [32] _LIST_ENTRY 请参考 _KTHREAD *__fastcall KiSelectReadyThread(ULONG LowPriority, _KPRCB *Prcb)...

批处理之for语句从入门到精通--呕血整理
文章目录 一、前言二、for语句的基本用法三、文本解析显神威:for /f 用法详解四、翻箱倒柜遍历文件夹:for /r五、仅仅为了匹配第一层目录而存在:for /d六、计数循环:for /l后记 for语句从入门到精通 一、前言 在批处理中&#…...

pycharm小游戏贪吃蛇及pygame模块学习()
由于代码量大,会逐渐发布 一.pycharm学习 在PyCharm中使用Pygame插入音乐和图片时,有以下这些注意事项: 插入音乐: - 文件格式支持:Pygame常用的音乐格式如MP3、OGG等,但MP3可能需额外安装库…...
redis实战--黑马商城 记录
一、视频地址 黑马程序员Redis入门到实战教程,深度透析redis底层原理redis分布式锁企业解决方案黑马点评实战项目 二、笔记地址 Redis基础篇Redis实战篇...

机器人技术革新:人工智能的强力驱动
内容概要 在当今世界,机器人技术与人工智能的结合正如星星与大海,彼此辉映。随着科技的不断进步,人工智能不仅仅是为机器人赋予了“聪明的大脑”,更是推动了整个行业的快速发展。回顾机器人技术的发展历程,我们会发现…...

漫途焊机安全生产监管方案,提升安全生产管理水平!
随着智能制造时代的到来,企业安全生产管理的重要性日益凸显。特别是在现代工厂中,焊机的安全生产监管成为了一个不容忽视的重要环节。传统的焊机安全生产监管方式存在诸多不足,如人工巡检频率低、数据延迟、安全隐患发现不及时等问题。因此&a…...

动态规划之两个数组的 dp(上)
文章目录 最长公共子序列不相交的线不同的子序列通配符匹配 最长公共子序列 题目:最长公共子序列 思路 选取s1的[0, i]区间以及s2的[0, j]区间作为研究对象 状态表示:dp[i][j]表示,s1的[0, i]区间以及s2的[0, j]区间内…...

DC-9靶机通关
这是这个系列的最后一个靶机了!!!经过前面的锻炼和学习,这次我的目标是尽量不借助任何教程或者提示来拿下这个靶机!!!下面我们看能不能成功!!! 1.实验环境 攻…...
前端注释都应该怎么写?
以下是一些前端注释的例子,展示了如何应用前面提到的建议: 1. 使用清晰、简洁的语言 // 计算两个数的平均值 function calculateAverage(a, b) {return (a b) / 2; }2. 描述代码的目的和功能 // 将日期格式化为 "YYYY-MM-DD" 的字符串 fun…...

深入解析缓存模式下的数据一致性问题
今天,我们来聊聊常见的缓存模式和数据一致性问题。 常见的缓存模式有:Cache Aside、Read Through、Write Through、Write Back、Refresh Ahead、Singleflight。 缓存模式 Cache Aside 在 Cache Aside 模式中,是把缓存当做一个独立的数据源…...

嵌入式常用功能之通讯协议1--IIC
嵌入式常用功能之通讯协议1--串口 嵌入式常用功能之通讯协议1--IIC(本文) 嵌入式常用功能之通讯协议1--SPI 一、IIC总线协议介绍 Inter-Integrated Circuit(集成电路总线),是由 Philips 半导体公司(现在的 NXP 半导体…...

【大模型RAG】拍照搜题技术架构速览:三层管道、两级检索、兜底大模型
摘要 拍照搜题系统采用“三层管道(多模态 OCR → 语义检索 → 答案渲染)、两级检索(倒排 BM25 向量 HNSW)并以大语言模型兜底”的整体框架: 多模态 OCR 层 将题目图片经过超分、去噪、倾斜校正后,分别用…...
基于大模型的 UI 自动化系统
基于大模型的 UI 自动化系统 下面是一个完整的 Python 系统,利用大模型实现智能 UI 自动化,结合计算机视觉和自然语言处理技术,实现"看屏操作"的能力。 系统架构设计 #mermaid-svg-2gn2GRvh5WCP2ktF {font-family:"trebuchet ms",verdana,arial,sans-…...
【杂谈】-递归进化:人工智能的自我改进与监管挑战
递归进化:人工智能的自我改进与监管挑战 文章目录 递归进化:人工智能的自我改进与监管挑战1、自我改进型人工智能的崛起2、人工智能如何挑战人类监管?3、确保人工智能受控的策略4、人类在人工智能发展中的角色5、平衡自主性与控制力6、总结与…...

Cinnamon修改面板小工具图标
Cinnamon开始菜单-CSDN博客 设置模块都是做好的,比GNOME简单得多! 在 applet.js 里增加 const Settings imports.ui.settings;this.settings new Settings.AppletSettings(this, HTYMenusonichy, instance_id); this.settings.bind(menu-icon, menu…...
【服务器压力测试】本地PC电脑作为服务器运行时出现卡顿和资源紧张(Windows/Linux)
要让本地PC电脑作为服务器运行时出现卡顿和资源紧张的情况,可以通过以下几种方式模拟或触发: 1. 增加CPU负载 运行大量计算密集型任务,例如: 使用多线程循环执行复杂计算(如数学运算、加密解密等)。运行图…...
Matlab | matlab常用命令总结
常用命令 一、 基础操作与环境二、 矩阵与数组操作(核心)三、 绘图与可视化四、 编程与控制流五、 符号计算 (Symbolic Math Toolbox)六、 文件与数据 I/O七、 常用函数类别重要提示这是一份 MATLAB 常用命令和功能的总结,涵盖了基础操作、矩阵运算、绘图、编程和文件处理等…...

Linux --进程控制
本文从以下五个方面来初步认识进程控制: 目录 进程创建 进程终止 进程等待 进程替换 模拟实现一个微型shell 进程创建 在Linux系统中我们可以在一个进程使用系统调用fork()来创建子进程,创建出来的进程就是子进程,原来的进程为父进程。…...

零基础在实践中学习网络安全-皮卡丘靶场(第九期-Unsafe Fileupload模块)(yakit方式)
本期内容并不是很难,相信大家会学的很愉快,当然对于有后端基础的朋友来说,本期内容更加容易了解,当然没有基础的也别担心,本期内容会详细解释有关内容 本期用到的软件:yakit(因为经过之前好多期…...
C++.OpenGL (14/64)多光源(Multiple Lights)
多光源(Multiple Lights) 多光源渲染技术概览 #mermaid-svg-3L5e5gGn76TNh7Lq {font-family:"trebuchet ms",verdana,arial,sans-serif;font-size:16px;fill:#333;}#mermaid-svg-3L5e5gGn76TNh7Lq .error-icon{fill:#552222;}#mermaid-svg-3L5e5gGn76TNh7Lq .erro…...
GitHub 趋势日报 (2025年06月06日)
📊 由 TrendForge 系统生成 | 🌐 https://trendforge.devlive.org/ 🌐 本日报中的项目描述已自动翻译为中文 📈 今日获星趋势图 今日获星趋势图 590 cognee 551 onlook 399 project-based-learning 348 build-your-own-x 320 ne…...