【果蔬购物商城管理与推荐系统】Python+Django网页界面+协同过滤推荐算法+管理系统网站
一、介绍
果蔬购物管理与推荐系统。本系统以Python作为主要开发语言,前端通过HTML、CSS、BootStrap等框架搭建界面,后端使用Django框架作为逻辑处理,通过Ajax实现前后端的数据通信。并基于用户对商品的评分信息,采用协同过滤推荐算法,实现对当前登录用户的个性化商品推荐。
主要功能有:
- 该系统分为普通用户和管理员两个角色
- 普通用户登录、注册
- 普通用户查看商品、加入购物车、购买、查看详情、发布评论、进行评分、查看购物车、个人订单、商品推荐等界面功能
- 管理员可以对商品和用户所有信息进行管理
二、系统效果图片展示
三、演示视频 and 完整代码 and 安装
视频+代码+介绍:https://www.yuque.com/ziwu/yygu3z/eiatceryze6simrx
四、协同过滤推荐算法
协同过滤推荐算法是一种基于用户行为数据的推荐系统算法,它通过分析用户之间的相似性或项目之间的相似性来预测用户可能喜欢的物品。主要分为两种类型:
-
用户基协同过滤(User-based Collaborative Filtering):这种算法通过查找相似的用户来推荐项目。如果两个用户在喜好上相似,那么一个用户喜欢的物品很可能另一个用户也会喜欢。
-
项目基协同过滤(Item-based Collaborative Filtering):与用户基不同,项目基协同过滤通过分析项目之间的相似性来推荐。如果用户喜欢某个项目,系统会推荐与该项目相似的其他项目。
协同过滤算法的优势在于能够提供个性化推荐,但它也有一些局限性,比如冷启动问题(新用户或新项目难以推荐)和稀疏性问题(用户-项目矩阵稀疏导致推荐不准确)。
下面是一个简单的Python示例代码,使用项目基协同过滤算法:
import numpy as np
from sklearn.metrics.pairwise import cosine_similarity
from sklearn.preprocessing import StandardScaler# 假设有一个简单的用户-项目评分矩阵
ratings = np.array([[5, 3, 0, 1],[4, 0, 0, 1],[1, 1, 0, 5],[1, 0, 5, 4],[0, 1, 5, 4]])# 标准化评分矩阵
scaler = StandardScaler()
ratings_scaled = scaler.fit_transform(ratings)# 计算项目之间的余弦相似度
item_similarity = cosine_similarity(ratings_scaled.T)# 将相似度矩阵转换为DataFrame以便查看
import pandas as pd
item_similarity_df = pd.DataFrame(item_similarity, index=range(ratings.shape[1]), columns=range(ratings.shape[1]))# 假设用户想要得到第0个项目的推荐
user_item_index = 0
similar_items = item_similarity_df[user_item_index].sort_values(ascending=False)[1:]# 打印推荐结果
print("推荐项目:", similar_items.index.tolist())
这段代码首先创建了一个简单的用户-项目评分矩阵,然后计算了项目之间的余弦相似度,并基于这些相似度为用户推荐了与他们已评分项目相似的其他项目。
相关文章:

【果蔬购物商城管理与推荐系统】Python+Django网页界面+协同过滤推荐算法+管理系统网站
一、介绍 果蔬购物管理与推荐系统。本系统以Python作为主要开发语言,前端通过HTML、CSS、BootStrap等框架搭建界面,后端使用Django框架作为逻辑处理,通过Ajax实现前后端的数据通信。并基于用户对商品的评分信息,采用协同过滤推荐…...

【大模型】海外生成式AI赛道的关键玩家:OpenAI、Anthropic之外还有谁?
引言 在生成式AI快速发展的今天,不同公司在各自领域发挥着独特作用。本文将从基础模型研发、开发工具框架、垂直领域应用三个维度,为读者梳理当前生成式AI技术领域的主要参与者,帮助开发者更好地把握技术发展方向。 一、基础模型研发公司 O…...
kubevirt cloud-init配置
https://cloudinit.readthedocs.io/en/latest/reference/examples.html (示例) https://cloudinit.readthedocs.io/en/latest/reference/faq.html (常见问题) https://cloudinit.readthedocs.io/en/latest/howto/debug_user_data.html (检查user_data) https://clo…...
Oracle 大表添加索引的最佳方式
背景: 业务系统中现在经常存在上亿数据的大表,在这样的大表上新建索引,是一个较为耗时的操作,特别是在生产环境的系统中,添加不当,有可能造成业务表锁表,业务表长时间的停服势必会影响正常业务…...
速度了解云原生后端!!!
云原生后端是指基于云计算技术和理念构建的后端系统架构,旨在充分利用云计算的优势,实现快速部署、弹性扩展、高可用性和高效运维。以下是云原生后端的一些关键特点和技术: 容器化 容器化是云原生架构的核心之一,它使用容器技术&…...
云计算Openstack 虚拟机调度策略
OpenStack的虚拟机调度策略是一个复杂而灵活的系统,它主要由两种调度器实现:FilterScheduler(过滤调度器)和ChanceScheduler(随机调度器)。以下是对这两种调度器及其调度策略的详细解释: 一、F…...
在 macOS 上添加 hosts 文件解析的步骤
步骤 1: 打开 hosts 文件 打开终端: 你可以通过 Spotlight 搜索(按 Cmd Space 并输入 Terminal)来打开终端。 使用文本编辑器打开 hosts 文件: 在终端中输入以下命令,使用 nano 文本编辑器打开 hosts 文件:…...

RHCE【防火墙】
目录 一、防火墙简介 二、iptables 实验一:搭建web服务,设置任何人能够通过80端口访问。 实验二:禁止所有人ssh远程登录该服务器 实验三:禁止某个主机地址ssh远程登录该服务器,允许该主机访问服务器的web服务。服…...

基于springboot的招聘系统的设计与实现
摘 要 随着互联网时代的发展,传统的线下管理技术已无法高效、便捷的管理信息。为了迎合时代需求,优化管理效率,各种各样的管理系统应运而生,国家在工作岗位要求不断提高的前提下,招聘系统建设也逐渐进入了信息化时代。…...
长度最小的子数组(滑动窗口)
给定一个含有 n 个正整数的数组和一个正整数 target 。 找出该数组中满足其总和大于等于 target 的长度最小的 子数组 [numsl, numsl1, ..., numsr-1, numsr] ,并返回其长度。如果不存在符合条件的子数组,返回 0 。 示例 1: 输入…...

构建灵活、高效的HTTP/1.1应用:探索h11库
文章目录 构建灵活、高效的HTTP/1.1应用:探索h11库背景这个库是什么?如何安装这个库?库函数使用方法使用场景常见的Bug及解决方案总结 构建灵活、高效的HTTP/1.1应用:探索h11库 背景 在现代网络应用中,HTTP协议是基础…...

大学英语救星!GPT助你完美解答完型填空和阅读理解
文章目录 零、前言一、再来十篇完型填空和阅读理解操作指导拍照:完型填空拍照:阅读理解 二、感受 零、前言 学习过程中,总是会遇到一些问题,但不好意思总是去麻烦问老师或同学 gpt可以帮社恐的你,解决学习问题&#…...
【linux】centos编译安装openssl1.1.1
文章目录 背景用途编译安装openssl1.1.1d测试centos的python2 ssl模块是否正常pyenv编译python3.10需要配置环境变量(必须)编译python前记得安装依赖 背景 首先, centos7 通过yum安装的openssl-devel包是1.0.2k的,这玩意儿太老了。我们选择从源码安装op…...

SpringBoot环境下的学生请假管理平台开发
2相关技术 2.1 MYSQL数据库 MySQL是一个真正的多用户、多线程SQL数据库服务器。 是基于SQL的客户/服务器模式的关系数据库管理系统,它的有点有有功能强大、使用简单、管理方便、安全可靠性高、运行速度快、多线程、跨平台性、完全网络化、稳定性等,非常…...

基于Transformer的路径规划 - 第五篇 GPT生成策略_解码方法优化
上一篇:基于Transformer的路径规划 - 第四篇 GPT模型优化 在上一篇中,我尝试优化GPT路径生成模型,但没有成功。在随机生成的测试集上,路径规划成功率只有99%左右。而使用传统的路径规划算法,例如A*,路径规划…...

项目模块十三:Util模块
一、项目设计思路 用于之后协议使用的工具类 二、静态成员函数 1、分割函数 static size_t Split(const string &src, const string &sep, vector<string> *array) string.find(const string &str, size_t pos 0) string.substr(size_t pos 0, size_t…...

10款舞台剧免费音频剪辑软件分享,你用过哪款?
在舞台剧的世界里,音乐是情感的传递者,是气氛的营造者。一个好的舞台剧,离不开精心剪辑的背景音乐。而选择合适的音频剪辑软件,就如同挑选舞台上的演员一样重要。今天,我们就从舞台剧音乐剪辑的角度,来聊聊…...

Redis常见面试题:ZSet底层数据结构,SDS、压缩列表ZipList、跳表SkipList
文章目录 一、Redis数据结构概述1.1 Redis有哪些数据类型1.2 Redis本质是哈希表1.3 Redis的哈希冲突与渐进式rehash1.4 数据结构底层1.4.1 简单动态字符串SDS1.4.2 双向链表(后续已废弃)1.4.3 压缩列表ZipList1.4.4 哈希表HashTable1.4.5 跳表SkipList1.…...
496.下一个更大元素Ⅰ
老样子,题目:496. 下一个更大元素 I - 力扣(LeetCode) 题解:代码随想录 AC代码: class Solution {public int[] nextGreaterElement(int[] nums1, int[] nums2) {Stack<Integer> stacknew Stack&l…...

C++类和对象上
1. 类的定义 1.1 类定义格式 • class为定义类的关键字,Stack为类的名字,{}中为类的主体,注意类定义结束时后⾯分号不能省略。类体中内容称为类的成员:类中的变量称为类的属性或成员变量; 类中的函数称为类的⽅法或者成员函数。…...
网络安全防御指南:全方位抵御暴力破解攻击
在数字化时代,网络安全威胁如影随形,暴力破解攻击(又称“爆破”)作为黑客常用的入侵手段,正时刻觊觎着系统的薄弱环节。想象一下,攻击者如同不知疲倦的“数字小偷”,利用自动化工具疯狂尝试成千…...

5.29打卡
浙大疏锦行 DAY 38 Dataset和Dataloader类 知识点回顾: 1. Dataset类的__getitem__和__len__方法(本质是python的特殊方法) 2. Dataloader类 3. minist手写数据集的了解 作业:了解下cifar数据集,尝试获取其中一张图…...

论文写作核心要点
不要只读论文里的motivation和method 论文里的图表和统计特征 在论文里找到具有统计意义的东西,那么在语料里也肯定遵循这样的规律,我们就能用机器学习的方法, 我们再用不同方法解决,哪种方法好,就用哪种 实验分析 …...
MapReduce(期末速成版)
起初在B站看3分钟的速成视频,感觉很多细节没听懂。 具体例子解析(文件内容去重) 对于两个输入文件,即文件A 和文件B,请编写MapReduce 程序,对两个文件进行合并,并剔除 其中重复的内容,得到一个新的输出文件…...
JavaScript性能优化实战指南(详尽分解版)
JavaScript性能优化实战指南 一、加载优化 减少HTTP请求 // 合并CSS/JS文件 // 使用雪碧图CSS Sprites .icon {background-image: url(sprites.png);background-position: -20px 0; }代码分割与懒加载 // 动态导入模块 button.addEventListener(click, async () > {cons…...

AR/MR实时光照阴影开发教程
一、效果演示 1、PICO4 Ultra MR 发光的球 2、AR实时光照 二、实现原理 PICO4 Ultra MR开发时,通过空间网格能力扫描周围环境,然后将扫描到的环境网格材质替换为一个透明材质并停止扫描;基于Google ARCore XR Plugin和ARFoundation进行安卓手…...
Domain Adaptation in Vision-Language Models (2023–2025): A Comprehensive Review
Domain Adaptation in Vision-Language Models (2023–2025): A Comprehensive Review Overview Recent research (2023–2025) has increasingly focused on adapting large Vision-Language Models (VLMs) to new domains and tasks with minimal supervision. A core tren…...

智慧零工平台前端开发实战:从uni-app到跨平台应用
智慧零工平台前端开发实战:从uni-app到跨平台应用 本文将详细介绍我如何使用uni-app框架开发一个支持微信小程序和H5的零工平台前端应用,包含技术选型、架构设计、核心功能实现及部署经验。 前言 在当今移动互联网时代,跨平台开发已成为提高开发效率的重要手段。本次我选择…...
Mac电脑上本地安装 MySQL并配置开启自启完整流程
文章目录 一、mysql安装1.1 使用 Homebrew 安装(推荐)1.2 手动下载 MySQL 社区版1.3 常见问题1.4 图形化管理工具(可选) 二、Mac 上配置 MySQL 开机自动启动2.1 使用 launchd 系统服务(原生支持)2.2 通过 H…...
WPF 全局加载界面、多界面实现渐变过渡效果
WPF 全局加载界面与渐变过渡效果 完整实现方案 MainWindow.xaml <Window x:Class"LoadingScreenDemo.MainWindow"xmlns"http://schemas.microsoft.com/winfx/2006/xaml/presentation"xmlns:x"http://schemas.microsoft.com/winfx/2006/xaml&quo…...