自编以e为底的对数函数ln,性能接近标准库函数
算法描述:
(1). 先做自变量x的范围检查,不能出现负数和0. 自己使用时,如果能通过其它途径保证自变量为正,那么可以省略这两个判断,提高速度。
(2). 根据IEEE 754浮点数的格式,,则 ln(x)=kln(2)+ln(m),可以通过位运算方便快速地获取k和m .
(3). 把 ln(1+x) 和 ln(1-x) 在 x=0 处的泰勒级数相减,
因为m的范围是(1, 2),不够接近1,如果直接令m=(1+x)/(1-x),那么x不够接近0,代入上面的泰勒级数,则精度不够高,所以要对m进行变换,常见的做法是乘上sqrt(2)/2,即
如果改为乘以 2/3,则
这个区间长度为12/35=0.34285714,比区间的长度
=0.34314575更短,代入泰勒级数后的精度更高一些。
多项式求值采用秦九韶算法,同时还使用fmadd指令加速运算(融合乘加,intel _mm_fmadd_sd)
计算机如何计算对数函数_数值计算】求对数函数值,输入实数x>0 ,输出x对应的对数函数值ln(x)(使用双精度dou-CSDN博客更详细地解释了如何利用IEEE 754浮点数的格式获取k和m.
标准库的算法可参考:glibc/sysdeps/ieee754/dbl-64/s_log1p.c at master · bminor/glibc · GitHub
最终的效果是,精度与标准库互有胜负(以windows的计算器以及Wolfram|Alpha: Computational Intelligence作为参考值),如果不对自变量为NAN的情况进行处理,速度稍快于标准库。

C++代码如下:
#include<stdio.h>
#include<math.h>
#include<time.h>
#include<immintrin.h>#define FMADD
constexpr double ln2 = 0.6931471805599453;
constexpr double ln3_2 = 0.40546510810816438; // ln(3/2)
constexpr double sqrt2_2 = 0.7071067811865475; // sqrt(2)/2
constexpr unsigned long long x000F = 0x000FFFFFFFFFFFFF;
constexpr unsigned long long x3FF0 = 0x3FF0000000000000;__m128d c17 = _mm_set_sd(2.0 / 17.0);
__m128d c15 = _mm_set_sd(2.0 / 15.0);
__m128d c13 = _mm_set_sd(2.0 / 13.0);
__m128d c11 = _mm_set_sd(2.0 / 11.0);
__m128d c9 = _mm_set_sd(2.0 / 9.0);
__m128d c7 = _mm_set_sd(2.0 / 7.0);
__m128d c5 = _mm_set_sd(2.0 / 5.0);
__m128d c3 = _mm_set_sd(2.0 / 3.0);
__m128d c1 = _mm_set_sd(2.0);inline double myln(double x) {if (x < 0) {return NAN;}if (x == 0) {return -INFINITY;}unsigned long long llx = *reinterpret_cast<unsigned long long*>(&x);short k = (llx >> 52) - 1023; // x = 2^k * munsigned long long llm = (llx & x000F) | x3FF0;double m = *reinterpret_cast<double*>(&llm);m *= 0.66666666666666666; //m *= sqrt2_2;x = (m - 1.0) / (m + 1.0);double x2 = x * x;
#ifdef FMADD__m128d x128 = _mm_set_sd(x);__m128d x2_128 = _mm_set_sd(x2);__m128d t128 = c17;t128 = _mm_fmadd_sd(t128, x2_128, c15);t128 = _mm_fmadd_sd(t128, x2_128, c13);t128 = _mm_fmadd_sd(t128, x2_128, c11);t128 = _mm_fmadd_sd(t128, x2_128, c9);t128 = _mm_fmadd_sd(t128, x2_128, c7);t128 = _mm_fmadd_sd(t128, x2_128, c5);t128 = _mm_fmadd_sd(t128, x2_128, c3);t128 = _mm_fmadd_sd(t128, x2_128, c1);t128 = _mm_mul_sd(t128, x128);m = _mm_cvtsd_f64(t128);
#elsem = 2.0 / 17.0;m = m * x2 + 2.0 / 15.0;m = m * x2 + 2.0 / 13.0;m = m * x2 + 2.0 / 11.0;m = m * x2 + 2.0 / 9.0;m = m * x2 + 2.0 / 7.0;m = m * x2 + 2.0 / 5.0;m = m * x2 + 2.0 / 3.0;m = m * x2 + 2.0;m *= x;
#endifreturn k * ln2 + ln3_2 + m; // return (k + 0.5) * ln2 + m; //如果前面 m *= sqrt2_2,那就需要用这一行return
}int main() {printf("double, 精度测试\n");for (double x = 0.1; x < 3; x += 0.1) {printf("myln(%2.1f)=%18.16lf\n ln(%2.1f)=%18.16lf\n-------\n", x, myln(x), x, log(x));}printf("速度测试,编译器优化设为/O2,CPU:Core i7-11800H \n");clock_t start = clock();double sum = 0;double x1 = 0.01, x2 =1000, dx = 1e-6;for (double x = x1; x < x2; x += dx) {sum += myln(x) / x;}printf("sum=%lf, myln_Time: %fs\n", sum, (double)(clock() - start) / CLOCKS_PER_SEC);start = clock();sum = 0;for (double x = x1; x < x2; x += dx) {sum += log(x) / x;}printf("sum=%lf, ln_Time: %fs\n", sum, (double)(clock() - start) / CLOCKS_PER_SEC);
}
运行结果如下:
double, 精度测试
myln(0.1)=-2.3025850929940459ln(0.1)=-2.3025850929940455
-------
myln(0.2)=-1.6094379124341003ln(0.2)=-1.6094379124341003
-------
myln(0.3)=-1.2039728043259359ln(0.3)=-1.2039728043259359
-------
myln(0.4)=-0.9162907318741550ln(0.4)=-0.9162907318741550
-------
myln(0.5)=-0.6931471805599396ln(0.5)=-0.6931471805599453
-------
myln(0.6)=-0.5108256237659907ln(0.6)=-0.5108256237659907
-------
myln(0.7)=-0.3566749439387324ln(0.7)=-0.3566749439387324
-------
myln(0.8)=-0.2231435513142100ln(0.8)=-0.2231435513142098
-------
myln(0.9)=-0.1053605156578265ln(0.9)=-0.1053605156578264
-------
myln(1.0)=-0.0000000000000002ln(1.0)=-0.0000000000000001
-------
myln(1.1)=0.0953101798043247ln(1.1)=0.0953101798043247
-------
myln(1.2)=0.1823215567939545ln(1.2)=0.1823215567939546
-------
myln(1.3)=0.2623642644674911ln(1.3)=0.2623642644674911
-------
myln(1.4)=0.3364722366212130ln(1.4)=0.3364722366212130
-------
myln(1.5)=0.4054651081081644ln(1.5)=0.4054651081081646
-------
myln(1.6)=0.4700036292457357ln(1.6)=0.4700036292457357
-------
myln(1.7)=0.5306282510621706ln(1.7)=0.5306282510621706
-------
myln(1.8)=0.5877866649021192ln(1.8)=0.5877866649021193
-------
myln(1.9)=0.6418538861723950ln(1.9)=0.6418538861723950
-------
myln(2.0)=0.6931471805599509ln(2.0)=0.6931471805599455
-------
myln(2.1)=0.7419373447293780ln(2.1)=0.7419373447293776
-------
myln(2.2)=0.7884573603642703ln(2.2)=0.7884573603642705
-------
myln(2.3)=0.8329091229351041ln(2.3)=0.8329091229351043
-------
myln(2.4)=0.8754687373539001ln(2.4)=0.8754687373539003
-------
myln(2.5)=0.9162907318741552ln(2.5)=0.9162907318741554
-------
myln(2.6)=0.9555114450274365ln(2.6)=0.9555114450274368
-------
myln(2.7)=0.9932517730102837ln(2.7)=0.9932517730102838
-------
myln(2.8)=1.0296194171811583ln(2.8)=1.0296194171811586
-------
myln(2.9)=1.0647107369924285ln(2.9)=1.0647107369924287
-------
速度测试,编译器优化设为/O2,CPU:Core i7-11800H
sum=13254515.057331, myln_Time: 3.817000s
sum=13254515.057331, ln_Time: 3.838000s
相关文章:
自编以e为底的对数函数ln,性能接近标准库函数
算法描述: (1). 先做自变量x的范围检查,不能出现负数和0. 自己使用时,如果能通过其它途径保证自变量为正,那么可以省略这两个判断,提高速度。 (2). 根据IEEE 754浮点数的格式,,则 ln(x)kln(2)ln…...
Java中的日期时间
JDK8之前常用的日期时间类 System.currentTimeMillis():获取当前毫秒数(long类型) java.util.Date:通用Date类 import java.util.Date;Date date new Date(); // 空参构造器 System.out.println(date.getTime()); // 获取当前时…...
位置编码的表示
位置编码的表示位置编码的表示位置编码的表示位置编码的表示位置编码的表示...
0,国产FPGA(紫光同创)-新建PDS工程
国产FPGA正在蓬勃发展,紫光同创FPGA是大家竞赛时经常遇到的一款国产FPGA,本专栏从IP核开始一直到后续图像处理等。 开发板:盘古50K标准板 1,新建PDS工程 点击File(1),然后是New Projects&#…...
c++联合
结构体与联合体的区别 结构体(struct)中所有变量是“共存”的——优点是“有容乃大”,全面;缺点是struct内存空间的分配是粗放的,不管用不用,全分配。 而联合体(union)中是各变量是“互斥”的——缺点就是不够“包容”ÿ…...
Edit Data. Create Cell Editors. Validate User Input 编辑数据。创建 Cell Editors。验证用户输入
Goto Data Grid 数据网格 Edit Data. Create Cell Editors. Validate User Input 编辑数据。创建 Cell Editors。验证用户输入 Get and Modify Cell Values in Code 在代码中获取和修改单元格值 仅当 Grid 及其列已完全初始化时,才使用以下方法。如果需要在表单仍…...
Java 文件操作与IO流
文件 文件有两个概念,在广义来看就是操作系统上对硬件和软件资源抽象为文件。 在侠义上来看,就是我们保存在硬盘上的文件 在这里我们讨论的是狭义的文件,在外面的硬盘上的文件细分又可以分为二进制文件和文本文件,文本文件可以通…...
探索开源MiniMind项目:让大语言模型不再神秘(1)
简介: 声明:本人非此项目作者,仅仅是探索项目,分享项目。如有不妥,请联系我删除! 原项目地址:GitHub - jingyaogong/minimind: 「大模型」3小时完全从0训练26M的小参数GPT,个人显卡即…...
Android 大疆面经
Android 大疆面经 文章目录 Android 大疆面经一面 一面 自我介绍问项目聊了10分钟View的绘制流程MVC,MVP,MVVM的区别view和viewmodel的通信,除了databing还有其他的方式面向对象和面向过程的区别工厂模式和策略模式,哪些框架使用…...
【2024-10-31-2024-11-03】LeetCode刷题——python语法基础题
📝前言说明: ●本专栏主要记录本人的基础算法学习以及LeetCode刷题记录,主要跟随B站作者灵茶山的视频进行学习,专栏中一篇文章为B站对应的一个视频 题目主要为B站视频内涉及的题目以及B站视频中提到的“课后作业”。 ●文章中的理…...
【算法】二分查找
目录 一、概念 二、思路 三、边界问题 一、概念 在一本书中查找某一页,我们总是倾向于先翻到整本书的中间,然后根据当前页数判断我们想要找的页在当前页的左半本中还是右半本中,接着继续翻到剩下半本书的中间...... 这就是二分查找思想在…...
第十五章 Vue工程化开发及Vue CLI脚手架
目录 一、引言 二、Vue CLI 基本介绍 三、安装Vue CLI 3.1. 安装npm和yarn 3.2. 安装Vue CLI 3.3. 查看 Vue 版本 四、创建启动工程 4.1. 创建项目架子 4.2. 启动工程 五、脚手架目录文件介绍 六、核心文件讲解 6.1. index.html 6.2. main.js 6.3. App.vue 一、…...
【Grafana】Grafana 基础入门
Grafana 简介 什么是Grafana Grafana 是一跨平台的开源的可视化分析工具,是目前网络架构和应用分析中最流行的时序数据展示工具,主要用于大规模指标数据的可视化展示。 它是用Go语言开发,可以做数据监控和数据统计,带有告警功能…...
如何获取页面上所有input框
要获取页面上所有的<input>框,你可以使用JavaScript。这通常可以通过查询DOM(文档对象模型)来实现,有几种方法可以做到这一点,包括使用document.querySelectorAll、document.getElementsByTagName或document.get…...
0-ARM Linux驱动开发-字符设备
一、字符设备概述 Linux 系统中,设备被分为字符设备、块设备和网络设备等。字符设备以字节流的方式进行数据传输,数据的访问是按顺序的,一个字节一个字节地进行读取和写入操作,没有缓冲区。例如,终端(/dev…...
使用 Faster Whisper 和 Gradio 实现实时语音转文字
随着人工智能技术的进步,语音识别已经成为最热门的研究领域之一。如何实现高效、准确的实时语音转文字功能,是许多开发者关注的重点。本文将介绍如何使用 Faster Whisper 和 Gradio 这两个强大工具,快速构建一个实时语音转文字应用。 Faster…...
redis v6.0.16 安装 基于Ubuntu 22.04
redis安装 基于Ubuntu 22.04 本文演示如何在ubuntu22.04下,安装redis v6.0.16,并配置测试远程访问。 Step1 更新环境 sudo apt updateStep2 安装redis sudo apt install redis-server -yStep3 启动 sudo systemctl restart redissudo systemctl sta…...
Milvus - 内存索引类型详解
1. 背景概述 在大规模数据处理和向量相似性搜索场景中,内存索引的使用显著提升了查询速度和效率。Milvus 提供了多种内存索引类型,以满足不同场景下的性能需求。本文将介绍 Milvus 支持的各种内存索引类型及其适用场景、配置参数和使用方法。 2. 为什么…...
【STM32】按键控制LED 光敏传感器控制蜂鸣器
文章目录 前置知识按键介绍传感器模块硬件电路按键硬件电路传感器模块硬件电路 C语言数据类型在Keil中的对应写法C语言枚举 按键控制LED接线图Hardware文件夹(模块化编程)LED驱动程序封装Key(按键)驱动程序封装 main.c源文件 光敏传感器控制蜂鸣器接线图…...
flutter-防抖
在Flutter中实现输入框的防抖功能,通常是为了减少用户输入时触发的事件数量,特别是在进行网络请求时。防抖(Debounce)意味着在用户停止输入一段时间后才触发事件。以下是实现输入框防抖的一种方法: 1、使用Debounce类…...
JavaSec-RCE
简介 RCE(Remote Code Execution),可以分为:命令注入(Command Injection)、代码注入(Code Injection) 代码注入 1.漏洞场景:Groovy代码注入 Groovy是一种基于JVM的动态语言,语法简洁,支持闭包、动态类型和Java互操作性,…...
rknn优化教程(二)
文章目录 1. 前述2. 三方库的封装2.1 xrepo中的库2.2 xrepo之外的库2.2.1 opencv2.2.2 rknnrt2.2.3 spdlog 3. rknn_engine库 1. 前述 OK,开始写第二篇的内容了。这篇博客主要能写一下: 如何给一些三方库按照xmake方式进行封装,供调用如何按…...
线程同步:确保多线程程序的安全与高效!
全文目录: 开篇语前序前言第一部分:线程同步的概念与问题1.1 线程同步的概念1.2 线程同步的问题1.3 线程同步的解决方案 第二部分:synchronized关键字的使用2.1 使用 synchronized修饰方法2.2 使用 synchronized修饰代码块 第三部分ÿ…...
(二)TensorRT-LLM | 模型导出(v0.20.0rc3)
0. 概述 上一节 对安装和使用有个基本介绍。根据这个 issue 的描述,后续 TensorRT-LLM 团队可能更专注于更新和维护 pytorch backend。但 tensorrt backend 作为先前一直开发的工作,其中包含了大量可以学习的地方。本文主要看看它导出模型的部分&#x…...
转转集团旗下首家二手多品类循环仓店“超级转转”开业
6月9日,国内领先的循环经济企业转转集团旗下首家二手多品类循环仓店“超级转转”正式开业。 转转集团创始人兼CEO黄炜、转转循环时尚发起人朱珠、转转集团COO兼红布林CEO胡伟琨、王府井集团副总裁祝捷等出席了开业剪彩仪式。 据「TMT星球」了解,“超级…...
成都鼎讯硬核科技!雷达目标与干扰模拟器,以卓越性能制胜电磁频谱战
在现代战争中,电磁频谱已成为继陆、海、空、天之后的 “第五维战场”,雷达作为电磁频谱领域的关键装备,其干扰与抗干扰能力的较量,直接影响着战争的胜负走向。由成都鼎讯科技匠心打造的雷达目标与干扰模拟器,凭借数字射…...
Python ROS2【机器人中间件框架】 简介
销量过万TEEIS德国护膝夏天用薄款 优惠券冠生园 百花蜂蜜428g 挤压瓶纯蜂蜜巨奇严选 鞋子除臭剂360ml 多芬身体磨砂膏280g健70%-75%酒精消毒棉片湿巾1418cm 80片/袋3袋大包清洁食品用消毒 优惠券AIMORNY52朵红玫瑰永生香皂花同城配送非鲜花七夕情人节生日礼物送女友 热卖妙洁棉…...
C++ 设计模式 《小明的奶茶加料风波》
👨🎓 模式名称:装饰器模式(Decorator Pattern) 👦 小明最近上线了校园奶茶配送功能,业务火爆,大家都在加料: 有的同学要加波霸 🟤,有的要加椰果…...
day36-多路IO复用
一、基本概念 (服务器多客户端模型) 定义:单线程或单进程同时监测若干个文件描述符是否可以执行IO操作的能力 作用:应用程序通常需要处理来自多条事件流中的事件,比如我现在用的电脑,需要同时处理键盘鼠标…...
uniapp 实现腾讯云IM群文件上传下载功能
UniApp 集成腾讯云IM实现群文件上传下载功能全攻略 一、功能背景与技术选型 在团队协作场景中,群文件共享是核心需求之一。本文将介绍如何基于腾讯云IMCOS,在uniapp中实现: 群内文件上传/下载文件元数据管理下载进度追踪跨平台文件预览 二…...
