从零学习大模型(十)-----剪枝基本概念
剪枝的基本概念
- 模型压缩中的地位:剪枝是模型压缩中的重要技术之一,它通过减少模型的参数量来降低计算资源的需求。对于大型神经网络,尤其是像BERT、GPT等参数量级巨大的模型,剪枝可以有效地减少模型的内存占用和计算量,从而加快模型的推理速度并降低部署成本。
- 重要性:剪枝的重要性在于它能够在尽量保持模型性能的前提下显著减小模型规模,使得深度学习模型在资源受限的设备(如移动设备、嵌入式系统)上也能够高效运行。剪枝不仅可以降低存储和计算成本,还可以减少模型在推理阶段的延迟,使其更适合于实时应用。此外,剪枝技术对于边缘计算和云计算等场景下的模型部署也至关重要,因为它可以优化硬件利用率并节省能源消耗。
结构化剪枝
结构化剪枝是一种对模型进行压缩的方法,通过剪去整个结构化的单元(如卷积核、通道、层等)来减少模型的复杂度。在这种方法中,模型的剪枝对象通常是具有特定结构的部分,例如卷积神经网络中的整个滤波器或通道,而不是单个权重参数。
工作原理:结构化剪枝的核心思想是找到模型中对最终预测影响较小的结构化单元,并将其剪除。例如,在卷积神经网络中,可以根据通道对模型性能的贡献程度,将一些低贡献的通道剪掉。剪掉这些通道后,模型的输入和输出维度都会发生相应的变化,使得整体计算量减少,从而提高推理速度和效率。
- 优点:
- 硬件友好:由于结构化剪枝的剪除对象是整个通道、滤波器或层,因此剪枝后的模型仍然保留了规则的结构,能够更好地利用现有的深度学习硬件(如GPU和TPU)进行加速。这种规则性使得硬件在执行时可以充分利用矩阵运算的并行性,从而带来显著的推理加速效果。
- 简化部署:结构化剪枝后的模型更容易部署,因为剪枝后的模型结构保持了一定的规整性,适配现有的深度学习框架和推理引擎时不需要进行复杂的修改。
- 缺点:
- 精度损失较大:相比于非结构化剪枝,结构化剪枝往往会导致较大的精度损失,因为每次剪枝的单位较大,可能会对模型的表示能力产生较大影响。
- 剪枝粒度较粗:由于剪枝的对象是整个滤波器或通道,因此灵活性较差,无法像非结构化剪枝那样精细地控制模型的稀疏程度。
常见方法:
- 基于BN层的通道剪枝:利用Batch Normalization(BN)层的缩放因子作为剪枝标准,剪掉缩放因子较小的通道,例如Network Slimming方法。
- L1范数剪枝:计算每个通道的L1范数,根据范数大小进行排序,剪除范数较小的通道。L1范数较小的通道被认为对模型输出的影响较小,因此可以被安全地剪掉。《Pruning Filters for Efficient ConvNets》
- 应用场景:结构化剪枝主要应用于对实时性要求较高的场景,如移动端设备上的推理任务、边缘计算等。在这些场景中,计算资源受限,通过结构化剪枝可以显著降低计算量,从而实现更快的响应速度。
非结构化剪枝
非结构化剪枝是一种精细化的剪枝方法,通过移除神经网络中的单个权重连接来减少模型的参数数量。这种方法并不局限于剪除整个滤波器或通道,而是逐个评估每个权重的重要性,剪去那些对模型输出影响较小的权重。
工作原理:非结构化剪枝的核心思想是找到对模型预测贡献最小的个别权重,然后将其剪除,使得模型变得更加稀疏。通常采用某种度量标准(如权重的绝对值)来衡量每个权重的重要性,绝对值较小的权重被认为对模型输出影响较小,可以被安全地剪掉。在剪枝后,模型通常需要再训练以恢复因剪枝而导致的性能损失。
- 优点:
- 高稀疏度:非结构化剪枝可以实现非常高的稀疏度,因为它直接针对单个权重进行剪除。这使得模型在参数数量上能够大幅度减少,特别适合在内存受限的环境中使用。
- 精细化控制:由于非结构化剪枝的粒度非常细,可以精确地控制模型的稀疏程度,从而实现较为平衡的剪枝效果,即在最小化精度损失的前提下最大化压缩比。
- 缺点:
- 硬件加速难度大:尽管非结构化剪枝可以减少模型的参数数量,但由于其剪除的是个别权重,这通常会导致不规则的稀疏结构。这种不规则性使得现有的硬件(如GPU和TPU)难以有效地利用稀疏性进行加速,因为矩阵运算的并行性难以充分发挥。
- 实现复杂:非结构化剪枝后的模型稀疏性较高,但这种稀疏结构难以直接被深度学习框架优化利用。因此,在推理阶段,需要专门的稀疏矩阵运算优化策略或特定的稀疏库来支持,以实现预期的加速效果。
常见方法:
- 权重大小剪枝(Magnitude Pruning):通过设定阈值,剪掉绝对值小于该阈值的权重 [Han et al., “Deep Compression: Compressing Deep Neural Networks with Pruning, Trained Quantization and Huffman Coding”, 2016]。最经典的方法之一是剪去权重绝对值最小的部分,逐步增加稀疏度。
- 基于梯度的剪枝:利用反向传播过程中梯度的信息来判断哪些权重对损失函数贡献最小,进而将其剪除 [Molchanov et al., “Pruning Convolutional Neural Networks for Resource Efficient Inference”, 2017],例如使用梯度乘以权重的绝对值作为剪枝标准。
应用场景:非结构化剪枝主要应用于内存受限但对实时性要求不高的场景,例如在一些需要将模型部署到低内存设备的情况下,或者在训练过程中进行稀疏化以减少存储需求。虽然非结构化剪枝的加速效果在硬件上可能不如结构化剪枝明显,但它在模型大小压缩方面的表现非常突出。
全连接层剪枝
全连接层剪枝是一种对神经网络中全连接层进行压缩的方法,通过剪除全连接层中的一些权重来减少参数数量和计算复杂度。全连接层剪枝通常采用权重大小作为重要性度量,剪掉那些绝对值较小的权重,因为这些权重对模型的整体预测贡献较小。
工作原理:全连接层剪枝的基本步骤包括计算每个权重的重要性,然后根据设定的阈值进行剪除。权重的绝对值通常被用作衡量其重要性的指标,绝对值较小的权重意味着对输出影响较小,因此可以被剪除。剪枝后,模型需要再训练以恢复部分性能损失。
- 优点:
- 显著减少参数量:全连接层是神经网络中参数数量最多的部分之一,通过剪枝可以显著减少模型的整体参数量,降低存储和计算需求。
- 灵活性高:全连接层剪枝可以非常灵活地调整剪枝比例,从而控制模型的压缩程度。
- 缺点:
- 硬件加速效果有限:由于全连接层剪枝往往是不规则的(即非结构化的),因此在实际硬件中可能无法有效利用这种稀疏性进行加速。
- 可能影响模型的泛化能力:过度剪枝可能会导致模型的泛化能力下降,尤其是在数据量有限的情况下。
常见方法:
- 权重剪枝(Weight Pruning):对全连接层中的权重进行剪枝,通常根据权重的绝对值大小进行剪除。
- 量化剪枝结合:结合剪枝与量化技术,进一步减少全连接层的存储需求。
应用场景:全连接层剪枝主要用于需要降低模型存储和计算成本的场景,如在内存和计算能力有限的设备上运行深度学习模型。全连接层剪枝对于模型中全连接层占比高的网络(例如一些经典的MLP模型)尤其有效。
Transformer层剪枝
Transformer层剪枝是一种针对Transformer模型(如BERT、GPT等)中的自注意力模块和前馈网络进行剪枝的方法,旨在减少模型的参数量和计算开销。Transformer剪枝通常包括层剪枝(Layer Pruning)、头剪枝(Head Pruning)以及权重剪枝等多种方式。
工作原理:Transformer层剪枝的核心思想是评估每个层、注意力头或权重对模型性能的重要性,然后根据评估结果去掉那些对模型性能贡献较小的部分。例如,头剪枝是指剪除自注意力机制中某些注意力头,这些头在最终输出中对预测任务的影响较小。层剪枝则是直接去掉Transformer中的某些编码器或解码器层,从而减小模型的深度。
优点:
- 显著减少计算复杂度:通过剪除部分层或注意力头,Transformer层剪枝可以显著减少模型的计算复杂度,降低推理时间,适合在资源受限的设备上部署。
- 灵活控制模型大小:剪枝可以灵活地选择剪除的层数或注意力头数目,从而控制模型的压缩比例,适应不同应用场景的需求。
缺点:
- 潜在的精度损失:剪枝过程可能导致模型性能下降,尤其是在去掉对模型预测有较大贡献的层或注意力头时。因此,剪枝后的模型通常需要再训练以弥补性能损失。
- 剪枝策略设计复杂:如何选择最优的剪枝策略是一个挑战,需要结合任务需求和模型的具体结构来确定最佳的剪枝方案。
常见方法:
- 头剪枝(Head Pruning):剪除多头自注意力机制中的一些注意力头,保留最有用的部分。例如 [Michel et al., “Are Sixteen Heads Really Better than One?”, 2019]。
- 层剪枝(Layer Pruning):剪除Transformer模型中的某些层,通常通过评估每层对最终任务的贡献来决定。例如 [Fan et al., “Reducing Transformer Depth on Demand with Structured Dropout”, 2019]。
- 权重剪枝(Weight Pruning):类似于其他神经网络中的权重剪枝,通过剪掉权重较小的部分来减小模型的参数量。
应用场景:Transformer层剪枝主要用于需要降低Transformer模型推理时间的场景,例如自然语言处理中的实时应用(如文本分类、机器翻译等),以及在边缘设备上部署大规模预训练模型时。通过剪枝,可以在尽量保持模型精度的前提下大幅度提高模型的推理效率。
相关文章:
从零学习大模型(十)-----剪枝基本概念
剪枝的基本概念 模型压缩中的地位:剪枝是模型压缩中的重要技术之一,它通过减少模型的参数量来降低计算资源的需求。对于大型神经网络,尤其是像BERT、GPT等参数量级巨大的模型,剪枝可以有效地减少模型的内存占用和计算量ÿ…...
Jest进阶知识:模拟 ES6 类 - 掌握类的依赖模拟与方法监听技巧
引言 在现代前端开发中,ES6 类(class)是常用的一种面向对象编程方式。在测试类的时候,我们经常需要模拟类的依赖,以避免外部因素对测试结果的影响。Jest 提供了强大的工具来模拟类及其方法,确保测试的高效…...

前端Nginx的安装与应用
目录 一、前端跨域方式 1.1、CORS(跨域资源共享) 1.2、JSONP(已过时) 1.3、WebSocket 1.4、PostMessage 1.5、Nginx 二、安装 三、应用 四、命令 4.1、基本操作命令 4.2、nginx.conf介绍 4.2.1、location模块 4.2.2、反向代理配置 4.2.3、负载均衡模块 4.2.4、通…...

Java设计模式(代理模式整理中ing)
一、代理模式 1、代理模式定义: 代理模式:由于某些原因要给某对象提供一个代理以控制对该对象的访问,这时访问对象不适合或者不能够直接引用目标对象,代理对象作为访问对象与目标对象之间的中介进行连接调控调用。 2、代理模式的…...

第J9周:Inception v3算法实战与解析(pytorch版)
>- **🍨 本文为[🔗365天深度学习训练营]中的学习记录博客** >- **🍖 原作者:[K同学啊]** 📌本周任务:📌 了解并学习InceptionV3相对与InceptionV1有哪些改进的地方 使用Inception完成天气…...
如何封装一个axios,封装axios有哪些好处
什么是Axios Axios 是一个基于 Promise 的 HTTP 客户端,用于在浏览器和 Node.js 中发送异步网络请求。它简化了发送 GET、POST、PUT、DELETE 等请求的过程,并且支持请求拦截、响应拦截、取消请求和自动处理 JSON 数据等功能。 为什么要封装Axios 封装…...
java的批量update
这个问题挺有代表性的,今天拿出来给大家一起分享一下,希望对你会有所帮助。 1 案发现场 有一天上午,在我的知识星球群里,有位小伙伴问了我一个问题:批量更新你们一般是使用when case吗?还是有其他的批量更…...
go语言连续监控事件并回调处理
前言 go语言中使用回调函数处理事件:事件监测部分(如无限循环中的事件检测逻辑)可以独立于具体的业务处理逻辑。这使得代码的各个部分更加清晰,易于理解和维护。如果需要更改事件处理的方式,只需要修改注册的回调函数…...

1.探索WebSocket:实时网络的心跳!
序言 你可能听说过"WebSokcet"这个词,感觉它好像很高深,但其实它是一个超级酷的小工具,让我们在Web应用里实现实时通信。想象一下,你可以像聊天一样,在浏览器和服务器之间来回“畅聊“,没有延迟…...

uniapp学习(010-2 实现抖音小程序上线)
零基础入门uniapp Vue3组合式API版本到咸虾米壁纸项目实战,开发打包微信小程序、抖音小程序、H5、安卓APP客户端等 总时长 23:40:00 共116P 此文章包含第113p的内容 文章目录 抖音小程序下载抖音开发者工具先去开发者工具里进行测试 抖音开放平台配置开始打包上传…...
测试和实施面试题收集
前端+测试+运维+算法综合 前端部分面试题 判断第二个日期比第一个日期大 如何用脚本判断用户输入的的字符串是下面的时间格式2004-11-21 必须要保证用户的输入是此格式,并且是时间,比如说月份不大于12等等,另外我需要用户输入两个,并且后一个要比前一个晚,只允许用JAVASCR…...

【Vue3】一文全览基础语法-案例程序及配图版
文章目录 Vue应用基本结构模块化开发ref和reactive绑定事件 v-on 简写显示和隐藏 v-show条件渲染 v-if动态属性绑定 v-bind 简写:遍历数组或对象 v-for双向数据绑定 v-model渲染数据 v-text 和 v-html计算属性 computed侦听器 watch自动侦听器 watchEffect 本文示例…...
【OpenSearch】安装部署OpenSearch和OpenSearch-Dashboard
一、安装OpenSearch 1.禁用主机swap提高性能 sudo swapoff -a2.增加OpenSearch可用的内存映射数量。 编辑sysctl配置文件 sudo vi /etc/sysctl.conf在文件中添加一行来定义所需的值, 或者如果键存在,则更改值,然后保存您的更改。 vm.max…...
【系统架构设计师】2023年真题论文: 论软件可靠性评价的设计与实现(包括和素材和论文)
更多内容请见: 备考系统架构设计师-专栏介绍和目录 文章目录 真题题目(2023年 试题3)论文素材参考论文参考摘要正文总结真题题目(2023年 试题3) 软件可靠性评价是利用可靠性数学模型、统计技术等,对软件失效数据进行处理,评估和预测软件可靠性的过程,包括选择模型、收集数…...

教程:使用 InterBase Express 访问数据库(二)
1. 添加数据模块(IBX 通用教程) 本节将创建一个数据模块(TDataModule),这是一种包含应用程序使用的非可视组件的表单。 以下是完全配置好的 TDataModule 的视图: 创建 TDataModule 后,您可以在其他表单中使用这个数据模块。 2. 添加 TDataModule 要将数据模块添加到…...

Windows密码的网络认证---基于挑战响应认证的NTLM协议
一,网络认证NTLM协议简介 在平时的测试中,经常会碰到处于工作组的计算机,处于工作组的计算机之间是无法建立一个可信的信托机构的,只能是点对点进行信息的传输。 举个例子就是,主机A想要访问主机B上的资源,…...
fpga 常量无法改变
parameter LED_ON_PERIOD0 n0*CLOCK_FREQ; parameter LED_OFF_PERIOD0 (2-n0)*CLOCK_FREQ;这种代码的变量不会无法内部修改 需要改成reg形式并在这种逻辑里面修改变量 always (posedge clk_ref or negedge sys_rst_n) begin虽然是并行逻辑 但是变量尽量还是先赋值从硬件上并…...

【HarmonyOS NEXT】如何给未知类型对象定义类型并使用递归打印所有的Key
关键词:嵌套对象、类型、递归、未知类型 目录 使用 Record 与 ESObject 定义未知对象类型 递归打印未知类型对象的key 在鸿蒙应用开发中,所有的数据都必须定义类型,且不存在 any 类型,那么我们当遇到 key 值可能随时变化的情况…...

RuoYi 样例框架运行步骤(测试项目自用,同学可自取)
目录 后台 API 运行导入,下载包端口号mysql 准备运行 PC(电脑端)运行安装 nodejs安装 yarn 及其依赖,启动服务登录admin(admin123) 或 ry(admin123) App(移动)运行下载 HBuilderX运行app运行注意࿱…...
Java进程CPU飙高排查
一、首先通过top指令查看当前占用CPU较高的进程pid 二、查看当前进程消耗资源的线程PID: top -Hp pid 使用 top -Hp <pid> 命令(pid为Java进程的id号)查看该Java进程内所有线程的资源占用情况。 三、通过print命令将线程pid转为16进…...
1688商品列表API与其他数据源的对接思路
将1688商品列表API与其他数据源对接时,需结合业务场景设计数据流转链路,重点关注数据格式兼容性、接口调用频率控制及数据一致性维护。以下是具体对接思路及关键技术点: 一、核心对接场景与目标 商品数据同步 场景:将1688商品信息…...

React19源码系列之 事件插件系统
事件类别 事件类型 定义 文档 Event Event 接口表示在 EventTarget 上出现的事件。 Event - Web API | MDN UIEvent UIEvent 接口表示简单的用户界面事件。 UIEvent - Web API | MDN KeyboardEvent KeyboardEvent 对象描述了用户与键盘的交互。 KeyboardEvent - Web…...

零基础设计模式——行为型模式 - 责任链模式
第四部分:行为型模式 - 责任链模式 (Chain of Responsibility Pattern) 欢迎来到行为型模式的学习!行为型模式关注对象之间的职责分配、算法封装和对象间的交互。我们将学习的第一个行为型模式是责任链模式。 核心思想:使多个对象都有机会处…...

NLP学习路线图(二十三):长短期记忆网络(LSTM)
在自然语言处理(NLP)领域,我们时刻面临着处理序列数据的核心挑战。无论是理解句子的结构、分析文本的情感,还是实现语言的翻译,都需要模型能够捕捉词语之间依时序产生的复杂依赖关系。传统的神经网络结构在处理这种序列依赖时显得力不从心,而循环神经网络(RNN) 曾被视为…...

dify打造数据可视化图表
一、概述 在日常工作和学习中,我们经常需要和数据打交道。无论是分析报告、项目展示,还是简单的数据洞察,一个清晰直观的图表,往往能胜过千言万语。 一款能让数据可视化变得超级简单的 MCP Server,由蚂蚁集团 AntV 团队…...
Web 架构之 CDN 加速原理与落地实践
文章目录 一、思维导图二、正文内容(一)CDN 基础概念1. 定义2. 组成部分 (二)CDN 加速原理1. 请求路由2. 内容缓存3. 内容更新 (三)CDN 落地实践1. 选择 CDN 服务商2. 配置 CDN3. 集成到 Web 架构 …...

WPF八大法则:告别模态窗口卡顿
⚙️ 核心问题:阻塞式模态窗口的缺陷 原始代码中ShowDialog()会阻塞UI线程,导致后续逻辑无法执行: var result modalWindow.ShowDialog(); // 线程阻塞 ProcessResult(result); // 必须等待窗口关闭根本问题:…...

嵌入式学习之系统编程(九)OSI模型、TCP/IP模型、UDP协议网络相关编程(6.3)
目录 一、网络编程--OSI模型 二、网络编程--TCP/IP模型 三、网络接口 四、UDP网络相关编程及主要函数 编辑编辑 UDP的特征 socke函数 bind函数 recvfrom函数(接收函数) sendto函数(发送函数) 五、网络编程之 UDP 用…...

篇章二 论坛系统——系统设计
目录 2.系统设计 2.1 技术选型 2.2 设计数据库结构 2.2.1 数据库实体 1. 数据库设计 1.1 数据库名: forum db 1.2 表的设计 1.3 编写SQL 2.系统设计 2.1 技术选型 2.2 设计数据库结构 2.2.1 数据库实体 通过需求分析获得概念类并结合业务实现过程中的技术需要&#x…...
OCR MLLM Evaluation
为什么需要评测体系?——背景与矛盾 能干的事: 看清楚发票、身份证上的字(准确率>90%),速度飞快(眨眼间完成)。干不了的事: 碰到复杂表格(合并单元…...