【jvm】为什么Xms和Xmx的值通常设置为相同的?
目录
- 1. 说明
- 2. 避免性能开销
- 3. 提升稳定性
- 4. 简化配置
- 5. 优化垃圾收集
- 6. 获取参数
- 6.1 代码示例
- 6.2 结果示例
1. 说明
- 1.-Xms 和 -Xmx 参数分别用于设置堆内存的初始大小(最小值)和最大大小。
- 2.在开发环境中,开发人员可能希望快速启动应用程序并了解应用程序运行时的内存使用情况,此时可以根据实际使用情况逐渐增加最大堆内存设定。
- 3.而在生产环境中,则需要根据应用程序的实际需求和容器限制的内存数量来调整堆内存大小,以确保应用程序的稳定性和性能。
2. 避免性能开销
- 1.当堆内存随着应用程序的变化而频繁扩展或收缩时,JVM需要花费时间来重新分配内存,并可能执行额外的垃圾收集操作。
- 2.这些动态调整会产生性能开销,影响应用程序的响应速度和吞吐量。
- 3.将 -Xms 和 -Xmx 设置为相同的值可以固定堆内存的大小,从而避免堆内存的动态调整,减少性能开销。
3. 提升稳定性
- 1.固定的堆内存大小有助于稳定应用程序的运行时性能。
- 2.当堆内存大小固定时,JVM可以更准确地预测和管理内存使用,减少因内存不足而导致的性能波动或崩溃。
4. 简化配置
- 1.将 -Xms 和 -Xmx 设置为相同的值可以简化JVM的配置过程。
- 2.开发人员无需根据应用程序的实际需求动态调整堆内存大小,而是可以预先设定一个固定的值,从而简化部署和维护工作。
5. 优化垃圾收集
- 1.在某些情况下,如果堆内存足够大,JVM就不太可能因为内存不足而频繁触发垃圾收集(GC)。
- 2.这可以减少GC的次数和持续时间,从而提升应用程序的性能。
- 3.将 -Xms 和 -Xmx 设置为相同的值可以确保堆内存始终保持在最大可用状态,从而优化垃圾收集过程。
6. 获取参数
6.1 代码示例
package com.learning;/*** @Author wangyouhui* @Description 获取Xms和Xmx**/
public class Test {public static void main(String[] args) {long xms = Runtime.getRuntime().totalMemory() / 1024 / 1024;long xmx = Runtime.getRuntime().maxMemory() / 1024 / 1024;System.out.println("-Xms:" + xms + "M");System.out.println("-Xmx:" + xmx + "M");}
}
6.2 结果示例
相关文章:

【jvm】为什么Xms和Xmx的值通常设置为相同的?
目录 1. 说明2. 避免性能开销3. 提升稳定性4. 简化配置5. 优化垃圾收集6. 获取参数6.1 代码示例6.2 结果示例 1. 说明 1.-Xms 和 -Xmx 参数分别用于设置堆内存的初始大小(最小值)和最大大小。2.在开发环境中,开发人员可能希望快速启动应用程…...
windows查看net网络监听端口命令和工具(ipconfig、netstat、tasklist、TCPView)
文章目录 使用命令提示符(CMD)查看网络连接和配置使用 netstat 命令查看监听端口查看特定的端口查看TCP监听端口tasklist查看对应进程ID的程序Get-NetTCPConnection 命令使用 TCPView工具使用命令提示符(CMD) 查看网络连接和配置 ipconfig :显示所有网络 适配器的当前 TC…...

JAVA-数据结构- 二叉搜索树
1.搜索树 前面我们已经使用C语言学习完了二叉树,懂得了一些二叉树的基本性质已经实现方法 https://mp.csdn.net/mp_blog/creation/editor/139572374,本文我们来一起进行二叉树的衍生-二叉搜索树 1.1 概念 二叉搜索树又称二叉排序树,它或者是…...
深入研究 RAG 流程中的关键组件
我们已经看到了整个RAG流程,并获得了第一手的实践经验,您可能会对RAG流程中一些组件的使用和目的存在很多疑惑,比如RunnablePassthrough。在本节中,我们将进一步了解这些关键组件。 RAG的核心模型思想是将一个复杂的任务分解为多…...
新手如何学习python并快速成为高手
英雄Python入门到精通链接:https://pan.quark.cn/s/57162ec366a9 学习Python作为新手,有以下几个步骤: 学习基本概念和语法:首先,你需要学习Python的基本概念和语法。可以通过在线教程、书籍或者视频教程来学习。了解…...

Linux历史命令history增加执行时间显示
Centos系统默认历史命令显示如下 为了更好的溯源,获取执行命令的准确时间,需要增加一些配置 设置环境变量 vim /etc/profile 在最下面添加以下环境配置 export HISTTIMEFORMAT"%Y-%m-%d %H:%M:%S " 立即刷新该环境变量 source /etc/pro…...

从 vue 源码看问题 — 你知道 Hook Event 吗?
前言 在之前的几篇文章中,都有提到 vue 中调用生命周期钩子时是通过 callHook() 方法进行调用的,比如在初始化篇章中调用 beforeCreate 和 created 生命周期钩子方式如下: 那么接下来一起来了解下到底什么是 Hook Event ? Hook Event 是什…...

信息安全工程师(68)可信计算技术与应用
前言 可信计算技术是一种计算机安全体系结构,旨在提高计算机系统在面临各种攻击和威胁时的安全性和保密性。 一、可信计算技术的定义与原理 可信计算技术通过包括硬件加密、受限访问以及计算机系统本身的完整性验证等技术手段,确保计算机系统在各种攻击和…...

每日OJ题_牛客_相差不超过k的最多数_滑动窗口_C++_Java
目录 牛客_相差不超过k的最多数_滑动窗口 题目解析 C代码 Java代码 牛客_相差不超过k的最多数_滑动窗口 相差不超过k的最多数_牛客题霸_牛客网 (nowcoder.com) 描述: 给定一个数组,选择一些数,要求选择的数中任意两数差的绝对值不超过 …...
来咯来咯webSocket
在项目总目录下 设置socketServe文件夹 里面创建下面两个文件 使用的时候需要开启 node webSocket.cjs var { Server } require(ws); var moment require(moment);const wss new Server({port: 8888 });let id 0; let onlineMemberList []; const defaultUser user;wss…...
Android CALL关于电话音频和紧急电话设置和获取
获取音频服务,设置音源类型:电话类型和获取最大电话音量,响铃模式 private AudioManager mAudioManager; mAudioManager (AudioManager) getSystemService(AUDIO_SERVICE); mAudioManager.setStreamVolume(AudioManager.STREAM_VOIC…...

【春秋云镜】CVE-2023-23752
目录 CVE-2023-23752漏洞细节漏洞利用示例修复建议 春秋云镜:解法一:解法二: CVE-2023-23752 是一个影响 Joomla CMS 的未授权路径遍历漏洞。该漏洞出现在 Joomla 4.0.0 至 4.2.7 版本中,允许未经认证的远程攻击者通过特定 API 端…...
C#-__DynamicallyInvokable
[__DynamicallyInvokable] 属性是用于 .NET Framework 中的特性之一。这个特性通常用于标记在动态语言运行时中可以进行调用的方法或属性。 当一个方法或属性被标记为 [__DynamicallyInvokable],它表明这个成员在动态语言的环境中是可调用的。换句话说,…...

2024年最新10款顶级项目管理软件排行
项目管理软件在现代项目管理中扮演着至关重要的角色,它不仅仅是一个工具,更是一种高效、系统化的方法来管理和优化项目流程,帮助项目经理和团队成员快速了解项目状态,加速项目进展。 进度猫 进度猫是一款以甘特图为向导的轻量级…...
Python NLTK进阶:深入自然语言处理
目录 Python NLTK进阶:深入自然语言处理 1. 文本处理技术 1.1 命名实体识别(NER) 1.2 共指消解 2. 语义分析 2.1 语义角色标注(SRL) 2.2 词义消歧(Word Sense Disambiguation) 3. 机器学…...
【React 的理解】
谈一谈你对 React 的理解 对待这类概念题,讲究一个四字口诀“概用思优”,即“讲概念,说用途,理思路,优缺点,列一遍” 。 React 是一个网页 UI 框架,通过组件化的方式解决视图层开发复用的问题&a…...

软件压力测试有多重要?北京软件测试公司有哪些?
软件压力测试是一种基本的质量保证行为,它是每个重要软件测试工作的一部分。压力测试是给软件不断加压,强制其在极限的情况下运行,观察它可以运行到何种程度,从而发现性能缺陷。 在数字化时代,用户对软件性能的要求越…...

十四届蓝桥杯STEMA考试Python真题试卷第二套第五题
来源:十四届蓝桥杯STEMA考试Python真题试卷第二套编程第五题 本题属于迷宫类问题,适合用DFS算法解决,解析中给出了Python中 map() 和列表推导式的应用技巧。最后介绍了DFS算法的两种常见实现方式——递归实现、栈实现,应用场景——迷宫类问题、图的连通性、树的遍历、拓朴排…...

虚拟机 Ubuntu 扩容
文章目录 一、Vmware 重新分配 Ubuntu 空间二、Ubuntu 扩容分区 一、Vmware 重新分配 Ubuntu 空间 先打开 Vmware ,选择要重新分配空间的虚拟机 点击 编辑虚拟机设置 ,再点击 硬盘 ,再点击 扩展 选择预计扩展的空间,然后点击 扩展…...
内网远程连接解决方案【Frp】
1、从https://github.com/fatedier/frp/releases下载需要的版本,如 frp_0.61.0_linux_amd64.tar.gz 2、解压tar -xvf frp_0.61.0_linux_amd64.tar.gz 3、配置服务端【外网云主机】,修改ftps.toml文件: bindPort 7000 vhostHTTPPort8000…...

地震勘探——干扰波识别、井中地震时距曲线特点
目录 干扰波识别反射波地震勘探的干扰波 井中地震时距曲线特点 干扰波识别 有效波:可以用来解决所提出的地质任务的波;干扰波:所有妨碍辨认、追踪有效波的其他波。 地震勘探中,有效波和干扰波是相对的。例如,在反射波…...

均衡后的SNRSINR
本文主要摘自参考文献中的前两篇,相关文献中经常会出现MIMO检测后的SINR不过一直没有找到相关数学推到过程,其中文献[1]中给出了相关原理在此仅做记录。 1. 系统模型 复信道模型 n t n_t nt 根发送天线, n r n_r nr 根接收天线的 MIMO 系…...

【7色560页】职场可视化逻辑图高级数据分析PPT模版
7种色调职场工作汇报PPT,橙蓝、黑红、红蓝、蓝橙灰、浅蓝、浅绿、深蓝七种色调模版 【7色560页】职场可视化逻辑图高级数据分析PPT模版:职场可视化逻辑图分析PPT模版https://pan.quark.cn/s/78aeabbd92d1...

排序算法总结(C++)
目录 一、稳定性二、排序算法选择、冒泡、插入排序归并排序随机快速排序堆排序基数排序计数排序 三、总结 一、稳定性 排序算法的稳定性是指:同样大小的样本 **(同样大小的数据)**在排序之后不会改变原始的相对次序。 稳定性对基础类型对象…...
苹果AI眼镜:从“工具”到“社交姿态”的范式革命——重新定义AI交互入口的未来机会
在2025年的AI硬件浪潮中,苹果AI眼镜(Apple Glasses)正在引发一场关于“人机交互形态”的深度思考。它并非简单地替代AirPods或Apple Watch,而是开辟了一个全新的、日常可接受的AI入口。其核心价值不在于功能的堆叠,而在于如何通过形态设计打破社交壁垒,成为用户“全天佩戴…...

jdbc查询mysql数据库时,出现id顺序错误的情况
我在repository中的查询语句如下所示,即传入一个List<intager>的数据,返回这些id的问题列表。但是由于数据库查询时ID列表的顺序与预期不一致,会导致返回的id是从小到大排列的,但我不希望这样。 Query("SELECT NEW com…...

《信号与系统》第 6 章 信号与系统的时域和频域特性
目录 6.0 引言 6.1 傅里叶变换的模和相位表示 6.2 线性时不变系统频率响应的模和相位表示 6.2.1 线性与非线性相位 6.2.2 群时延 6.2.3 对数模和相位图 6.3 理想频率选择性滤波器的时域特性 6.4 非理想滤波器的时域和频域特性讨论 6.5 一阶与二阶连续时间系统 6.5.1 …...
在RK3588上搭建ROS1环境:创建节点与数据可视化实战指南
在RK3588上搭建ROS1环境:创建节点与数据可视化实战指南 背景介绍完整操作步骤1. 创建Docker容器环境2. 验证GUI显示功能3. 安装ROS Noetic4. 配置环境变量5. 创建ROS节点(小球运动模拟)6. 配置RVIZ默认视图7. 创建启动脚本8. 运行可视化系统效果展示与交互技术解析ROS节点通…...
机器学习的数学基础:线性模型
线性模型 线性模型的基本形式为: f ( x ) ω T x b f\left(\boldsymbol{x}\right)\boldsymbol{\omega}^\text{T}\boldsymbol{x}b f(x)ωTxb 回归问题 利用最小二乘法,得到 ω \boldsymbol{\omega} ω和 b b b的参数估计$ \boldsymbol{\hat{\omega}}…...
多元隐函数 偏导公式
我们来推导隐函数 z z ( x , y ) z z(x, y) zz(x,y) 的偏导公式,给定一个隐函数关系: F ( x , y , z ( x , y ) ) 0 F(x, y, z(x, y)) 0 F(x,y,z(x,y))0 🧠 目标: 求 ∂ z ∂ x \frac{\partial z}{\partial x} ∂x∂z、 …...