当前位置: 首页 > news >正文

YOLOv11融合CVPR[2023]空间和通道重建卷积ScConv模块及相关改进思路|YOLO改进最简教程


YOLOv11v10v8使用教程:  YOLOv11入门到入土使用教程

YOLOv11改进汇总贴:YOLOv11及自研模型更新汇总 


《SCConv: Spatial and Channel Reconstruction Convolution for Feature Redundancy》

一、 模块介绍

        论文链接:SCConv: Spatial and Channel Reconstruction Convolution...

        代码链接(大佬复现):https://github.com/cheng-haha/ScConv

论文速览:卷积神经网络 (CNN) 在各种计算机视觉任务中取得了卓越的性能,但这是以消耗大量计算资源为代价的,部分原因是卷积层提取了冗余特征。最近的工作要么压缩训练有素的大型模型,要么探索设计良好的轻量级模型。在本文中,我们尝试利用特征之间的空间和通道冗余进行 CNN 压缩,并提出了一种高效的卷积模块,称为 SCConv(空间和通道重建卷积),以减少冗余计算并促进代表性特征学习。所提出的 SCConv 由两个单元组成:空间重建单元 (SRU) 和通道重建单元 (CRU)。SRU 采用 separate-and-reconstruct 方法来抑制空间冗余,而 CRU 使用 split-transform-andfuse 策略来减少通道冗余。此外,SCConv 是一个即插即用的架构单元,可用于直接替换各种卷积神经网络中的标准卷积。实验结果表明,SCConv 嵌入式模型能够通过减少冗余特征来实现更好的性能,从而显著降低复杂性和计算成本。

总结:轻量化模块,好用。


二、 加入到YOLO中

2.1 创建脚本文件

        首先在ultralytics->nn路径下创建blocks.py脚本,用于存放模块代码。

2.2 复制代码        

        复制代码粘到刚刚创建的blocks.py脚本中,如下图所示:

import torch
import torch.nn as nn
import torch.nn.functional as Fclass GroupBatchnorm2d(nn.Module):def __init__(self, c_num: int,group_num: int = 16,eps: float = 1e-10):super(GroupBatchnorm2d, self).__init__()assert c_num >= group_numself.group_num = group_numself.weight = nn.Parameter(torch.randn(c_num, 1, 1))self.bias = nn.Parameter(torch.zeros(c_num, 1, 1))self.eps = epsdef forward(self, x):N, C, H, W = x.size()x = x.view(N, self.group_num, -1)mean = x.mean(dim=2, keepdim=True)std = x.std(dim=2, keepdim=True)x = (x - mean) / (std + self.eps)x = x.view(N, C, H, W)return x * self.weight + self.biasclass SRU(nn.Module):def __init__(self,oup_channels: int,group_num: int = 16,gate_treshold: float = 0.5,torch_gn: bool = True):super().__init__()self.gn = nn.GroupNorm(num_channels=oup_channels, num_groups=group_num) if torch_gn else GroupBatchnorm2d(c_num=oup_channels, group_num=group_num)self.gate_treshold = gate_tresholdself.sigomid = nn.Sigmoid()def forward(self, x):gn_x = self.gn(x)w_gamma = self.gn.weight / sum(self.gn.weight)w_gamma = w_gamma.view(1, -1, 1, 1)reweigts = self.sigomid(gn_x * w_gamma)# Gatew1 = torch.where(reweigts > self.gate_treshold, torch.ones_like(reweigts), reweigts)  # 大于门限值的设为1,否则保留原值w2 = torch.where(reweigts > self.gate_treshold, torch.zeros_like(reweigts), reweigts)  # 大于门限值的设为0,否则保留原值x_1 = w1 * xx_2 = w2 * xy = self.reconstruct(x_1, x_2)return ydef reconstruct(self, x_1, x_2):x_11, x_12 = torch.split(x_1, x_1.size(1) // 2, dim=1)x_21, x_22 = torch.split(x_2, x_2.size(1) // 2, dim=1)return torch.cat([x_11 + x_22, x_12 + x_21], dim=1)class CRU(nn.Module):'''alpha: 0<alpha<1'''def __init__(self,op_channel: int,alpha: float = 1 / 2,squeeze_radio: int = 2,group_size: int = 2,group_kernel_size: int = 3,):super().__init__()self.up_channel = up_channel = int(alpha * op_channel)self.low_channel = low_channel = op_channel - up_channelself.squeeze1 = nn.Conv2d(up_channel, up_channel // squeeze_radio, kernel_size=1, bias=False)self.squeeze2 = nn.Conv2d(low_channel, low_channel // squeeze_radio, kernel_size=1, bias=False)# upself.GWC = nn.Conv2d(up_channel // squeeze_radio, op_channel, kernel_size=group_kernel_size, stride=1,padding=group_kernel_size // 2, groups=group_size)self.PWC1 = nn.Conv2d(up_channel // squeeze_radio, op_channel, kernel_size=1, bias=False)# lowself.PWC2 = nn.Conv2d(low_channel // squeeze_radio, op_channel - low_channel // squeeze_radio, kernel_size=1,bias=False)self.advavg = nn.AdaptiveAvgPool2d(1)def forward(self, x):# Splitup, low = torch.split(x, [self.up_channel, self.low_channel], dim=1)up, low = self.squeeze1(up), self.squeeze2(low)# TransformY1 = self.GWC(up) + self.PWC1(up)Y2 = torch.cat([self.PWC2(low), low], dim=1)# Fuseout = torch.cat([Y1, Y2], dim=1)out = F.softmax(self.advavg(out), dim=1) * outout1, out2 = torch.split(out, out.size(1) // 2, dim=1)return out1 + out2class ScConv(nn.Module):def __init__(self,op_channel: int,group_num: int = 4,gate_treshold: float = 0.5,alpha: float = 1 / 2,squeeze_radio: int = 2,group_size: int = 2,group_kernel_size: int = 3,):super().__init__()self.SRU = SRU(op_channel,group_num=group_num,gate_treshold=gate_treshold)self.CRU = CRU(op_channel,alpha=alpha,squeeze_radio=squeeze_radio,group_size=group_size,group_kernel_size=group_kernel_size)def forward(self, x):x = self.SRU(x)x = self.CRU(x)return x

2.3 更改task.py文件 

       打开ultralytics->nn->modules->task.py,在脚本空白处导入函数。

from ultralytics.nn.blocks import *

        之后找到模型解析函数parse_model(约在tasks.py脚本中940行左右位置,可能因代码版本不同变动),在该函数的最后一个else分支上面增加相关解析代码。

        elif m is ScConv:c2 = ch[f]args = [ch[f], ]

2.4 更改yaml文件 

yam文件解读:YOLO系列 “.yaml“文件解读_yolo yaml文件-CSDN博客

       打开更改ultralytics/cfg/models/11路径下的YOLOv11.yaml文件,替换原有模块。(放在该位置仅能插入该模块,具体效果未知。博主精力有限,仅完成与其他模块二次创新融合的测试,结构图见文末,代码见群文件更新。)

# Ultralytics YOLO 🚀, AGPL-3.0 license
# YOLO11 object detection model with P3-P5 outputs. For Usage examples see https://docs.ultralytics.com/tasks/detect# Parameters
nc: 80 # number of classes
scales: # model compound scaling constants, i.e. 'model=yolo11n.yaml' will call yolo11.yaml with scale 'n'# [depth, width, max_channels]n: [0.50, 0.25, 1024] # summary: 319 layers, 2624080 parameters, 2624064 gradients, 6.6 GFLOPss: [0.50, 0.50, 1024] # summary: 319 layers, 9458752 parameters, 9458736 gradients, 21.7 GFLOPsm: [0.50, 1.00, 512] # summary: 409 layers, 20114688 parameters, 20114672 gradients, 68.5 GFLOPsl: [1.00, 1.00, 512] # summary: 631 layers, 25372160 parameters, 25372144 gradients, 87.6 GFLOPsx: [1.00, 1.50, 512] # summary: 631 layers, 56966176 parameters, 56966160 gradients, 196.0 GFLOPs# YOLO11n backbone
backbone:# [from, repeats, module, args]- [-1, 1, Conv, [64, 3, 2]] # 0-P1/2- [-1, 1, Conv, [128, 3, 2]] # 1-P2/4- [-1, 2, C3k2, [256, False, 0.25]]- [-1, 1, Conv, [256, 3, 2]] # 3-P3/8- [-1, 2, C3k2, [512, False, 0.25]]- [-1, 1, Conv, [512, 3, 2]] # 5-P4/16- [-1, 2, ScConv, []]- [-1, 1, Conv, [1024, 3, 2]] # 7-P5/32- [-1, 2, C3k2, [1024, True]]- [-1, 1, SPPF, [1024, 5]] # 9- [-1, 2, C2PSA, [1024]] # 10# YOLO11n head
head:- [-1, 1, nn.Upsample, [None, 2, "nearest"]]- [[-1, 6], 1, Concat, [1]] # cat backbone P4- [-1, 2, C3k2, [512, False]] # 13- [-1, 1, nn.Upsample, [None, 2, "nearest"]]- [[-1, 4], 1, Concat, [1]] # cat backbone P3- [-1, 2, C3k2, [256, False]] # 16 (P3/8-small)- [-1, 1, Conv, [256, 3, 2]]- [[-1, 13], 1, Concat, [1]] # cat head P4- [-1, 2, C3k2, [512, False]] # 19 (P4/16-medium)- [-1, 1, Conv, [512, 3, 2]]- [[-1, 10], 1, Concat, [1]] # cat head P5- [-1, 2, C3k2, [1024, True]] # 22 (P5/32-large)- [[16, 19, 22], 1, Detect, [nc]] # Detect(P3, P4, P5)


 2.5 修改train.py文件

       创建Train脚本用于训练。

from ultralytics.models import YOLO
import os
os.environ['KMP_DUPLICATE_LIB_OK'] = 'True'if __name__ == '__main__':model = YOLO(model='ultralytics/cfg/models/11/yolo11.yaml')# model.load('yolov8n.pt')model.train(data='./data.yaml', epochs=2, batch=1, device='0', imgsz=640, workers=2, cache=False,amp=True, mosaic=False, project='runs/train', name='exp')

         在train.py脚本中填入修改好的yaml路径,运行即可训练,数据集创建教程见下方链接。

YOLOv11入门到入土使用教程(含结构图)_yolov11使用教程-CSDN博客

三、相关改进思路(2024/11/16日群文件)

根据ScConv模块特性,可替换C2f、C3模块中的BottleNeck部分,代码见群文件,结构如图。

 ⭐另外,融合上百种深度学习改进模块的YOLO项目仅79.9(含百种改进的v9),RTDETR79.9,含高性能自研模型,更易发论文,代码每周更新,欢迎点击下方小卡片加我了解。⭐


相关文章:

YOLOv11融合CVPR[2023]空间和通道重建卷积ScConv模块及相关改进思路|YOLO改进最简教程

YOLOv11v10v8使用教程&#xff1a; YOLOv11入门到入土使用教程 YOLOv11改进汇总贴&#xff1a;YOLOv11及自研模型更新汇总 《SCConv: Spatial and Channel Reconstruction Convolution for Feature Redundancy》 一、 模块介绍 论文链接&#xff1a;SCConv: Spatial and Cha…...

C++研发笔记13——C语言程序设计初阶学习笔记11

从今天开始我们开始第三模块《分支语句和循环语句》的学习&#xff0c;在本模块中我们将会涉及到以下9个内容&#xff1a;什么是语句、分支语句——if语言、分支语句——switch语句、循环语句——while循环、循环语句——for循环、循环语句——do while循环、折半查找算法、猜数…...

html5拖放

1、什么是拖放&#xff08;Drag 和 Drop&#xff09; 拖放&#xff0c;字面意思就是拖动&#xff0c;放置 在编程里面也是如此,拖放是一种常见的特性&#xff0c;即抓取对象以后拖到另一个位置。 在 HTML5 中&#xff0c;拖放是标准的一部分&#xff0c;任何元素都能够拖放。…...

卫导调零天线功率倒置算法原理及MATLAB仿真

卫导调零天线功率倒置算法原理及MATLAB仿真 文章目录 前言一、调零天线简介二、功率倒置自适应算法三、MATLAB仿真四、MATLAB代码总结 前言 \;\;\;\;\; 自适应调零抗干扰技术可以很大程度改善导航抗干扰性能&#xff0c;也是目前导航抗干扰技术中不可或缺的&#xff0c;其研究意…...

【划分型 DP】力扣139. 单词拆分

给你一个字符串 s 和一个字符串列表 wordDict 作为字典。如果可以利用字典中出现的一个或多个单词拼接出 s 则返回 true。 注意&#xff1a;不要求字典中出现的单词全部都使用&#xff0c;并且字典中的单词可以重复使用。 示例 1&#xff1a; 输入: s “leetcode”, wordDic…...

Python学习从0到1 day26 第三阶段 Spark ④ 数据输出

半山腰太挤了&#xff0c;你该去山顶看看 —— 24.11.10 一、输出为python对象 1.collect算子 功能: 将RDD各个分区内的数据&#xff0c;统一收集到Driver中&#xff0c;形成一个List对象 语法&#xff1a; rdd.collect() 返回值是一个list列表 示例&#xff1a; from …...

AWTK fscript 中的 JSON 扩展函数

fscript 是 AWTK 内置的脚本引擎&#xff0c;开发者可以在 UI XML 文件中直接嵌入 fscript 脚本&#xff0c;提高开发效率。本文介绍一下 fscript 中的 ** JSON 扩展函数 ** 1.json_load 加载 json 数据。 原型 json_load(str) > object json_load(binary) > object js…...

动态规划 —— dp 问题-买卖股票的最佳时机III

1. 买卖股票的最佳时机III 题目链接&#xff1a; 123. 买卖股票的最佳时机 III - 力扣&#xff08;LeetCode&#xff09;https://leetcode.cn/problems/best-time-to-buy-and-sell-stock-iii/description/ 2. 题目解析 3. 算法原理 状态表示&#xff1a;以某一个位置为结尾或者…...

“绽放艺术风采、激发强国力量” 海南省第十一届中小学生艺术展演活动圆满开展

2024年11月1日&#xff0c;由省教育厅主办、琼台师范学院承办的海南省第十一届中小学生艺术展演省级展演活动在海口正式拉开帷幕。来自全省各市县、省属学校等共计4000余名师生参加本届中小学生艺术展演现场展演活动。 本届展演活动以“绽放艺术风采、激发强国力量”为主题&…...

Linux之文件和目录类命令详解(2)

Linux之文件和目录类命令详解&#xff08;2&#xff09; 1、mv-移动文件或重命名2、find-查找文件和目录3、locate-快速查找文件4、du-显示目录或文件的磁盘使用情况5、df-显示文件系统的磁盘空间使用情况6、chmod-更改文件或目录的权限7、chown-更改文件或目录的拥有者8、tree…...

NVR管理平台EasyNVR多品牌NVR管理工具/设备摄像头开启ONVIF的方法

NVR小程序接入平台EasyNVR作为一款功能强大的安防视频监控平台&#xff0c;以其出色的兼容性和灵活性&#xff0c;在智慧校园、智慧工厂、智慧水利等多个场景中得到了广泛应用。本文将重点介绍如何为大华摄像头开启ONVIF协议&#xff0c;以便与EasyNVR进行无缝对接。 大华大部分…...

Pr 视频过渡:沉浸式视频

效果面板/视频过渡/沉浸式视频 Video Transitions/Immersive Video Adobe Premiere Pro 的视频过渡效果中&#xff0c;沉浸式视频 Immersive Video效果组主要用于 VR 视频剪辑之间的过渡。 自动 VR 属性 Auto VR Properties是所有 VR 视频过渡效果的通用选项。 默认勾选&#x…...

SwiftUI开发教程系列 - 第1章:简介与环境配置

1.1 SwiftUI简介 SwiftUI 是 Apple 于 2019 年推出的声明式用户界面框架&#xff0c;旨在简化 iOS、macOS、watchOS 和 tvOS 应用的 UI 开发。与 UIKit 的命令式编程方式不同&#xff0c;SwiftUI 提供了一种声明式语法&#xff0c;让开发者可以以更加直观、简洁的方式构建 UI。…...

gitlab ci/cd搭建及使用笔记

记录下使用gitlab的ci/cd的devops构建过程中&#xff0c;一些易忘点或者踩坑点&#xff1a; 官方文档中英文&#xff08;建议英文&#xff09; https://docs.gitlab.com/ee/ci/yaml/artifacts_reports.html https://gitlab.cn/docs/jh/ci/pipelines/schedules.html为什么创建了…...

Xcode 16 中 Swift Testing 的参数化(Parameterized)机制趣谈

概述 我们之前曾在 《用接地气的例子趣谈 WWDC 24 全新的 Swift Testing 入门》系列博文以及《WWDC24&#xff08;Xcode 16&#xff09;中全新的 Swift Testing 使用进阶》博文中较为系统地介绍了今年 WWDC 24 中全新的 Swift Testing 测试系统。 不过 Swift Testing 的本领远…...

Python自动化运维DevSecOps与安全自动化

Python自动化运维DevSecOps与安全自动化 目录 &#x1f6e1;️ DevSecOps概念与实践&#x1f50d; 自动化安全扫描与漏洞修复&#x1f9f0; 基于Python的安全审计与合规性检查&#x1f433; 云平台与容器安全&#xff1a;基于Python的容器扫描工具⚠️ 自定义安全检测与漏洞修…...

2024下半年系统架构师考试【回忆版】

2024年11月10日&#xff0c;系统架构师考试如期举行&#xff0c;屡战屡败的参试倒是把北京的学校转了好几所。 本次考试时间 考试科目考试时间综合知识、案例分析8:30 - 12:30论文14:30 - 16:30 综合知识 1、1-1000以内包含5的数字个数 2、 案例分析 1、RESTful 对于前后…...

UE5.4 PCG 自定义PCG蓝图节点

ExecuteWithContext&#xff1a; PointLoopBody&#xff1a; 效果&#xff1a;点密度值与缩放成正比...

迁移学习相关基础

迁移学习 目标 将某个领域或任务上学习到的知识或模式应用到不同但相关的领域或问题中。 主要思想 从相关领域中迁移标注数据或者知识结构、完成或改进目标领域或任务的学习效果。 概述 Target data&#xff1a;和你的任务有直接关系的数据&#xff0c;但数据量少&#xff…...

华为云计算HCIE-Cloud Computing V3.0试验考试北京考场经验分享

北京试验考场 北京考场位置 1.试验考场地址 北京市海淀区北清路156号中关村环保科技示范园区M地块Q21楼 考试场选择北京&#xff0c;就是上面这个地址&#xff0c;在预约考试的时候会显示地址&#xff0c;另外在临近考试的时候也会给你发邮件&#xff0c;邮件内会提示你考试…...

Docker 离线安装指南

参考文章 1、确认操作系统类型及内核版本 Docker依赖于Linux内核的一些特性&#xff0c;不同版本的Docker对内核版本有不同要求。例如&#xff0c;Docker 17.06及之后的版本通常需要Linux内核3.10及以上版本&#xff0c;Docker17.09及更高版本对应Linux内核4.9.x及更高版本。…...

ES6从入门到精通:前言

ES6简介 ES6&#xff08;ECMAScript 2015&#xff09;是JavaScript语言的重大更新&#xff0c;引入了许多新特性&#xff0c;包括语法糖、新数据类型、模块化支持等&#xff0c;显著提升了开发效率和代码可维护性。 核心知识点概览 变量声明 let 和 const 取代 var&#xf…...

Vue3 + Element Plus + TypeScript中el-transfer穿梭框组件使用详解及示例

使用详解 Element Plus 的 el-transfer 组件是一个强大的穿梭框组件&#xff0c;常用于在两个集合之间进行数据转移&#xff0c;如权限分配、数据选择等场景。下面我将详细介绍其用法并提供一个完整示例。 核心特性与用法 基本属性 v-model&#xff1a;绑定右侧列表的值&…...

高频面试之3Zookeeper

高频面试之3Zookeeper 文章目录 高频面试之3Zookeeper3.1 常用命令3.2 选举机制3.3 Zookeeper符合法则中哪两个&#xff1f;3.4 Zookeeper脑裂3.5 Zookeeper用来干嘛了 3.1 常用命令 ls、get、create、delete、deleteall3.2 选举机制 半数机制&#xff08;过半机制&#xff0…...

【磁盘】每天掌握一个Linux命令 - iostat

目录 【磁盘】每天掌握一个Linux命令 - iostat工具概述安装方式核心功能基础用法进阶操作实战案例面试题场景生产场景 注意事项 【磁盘】每天掌握一个Linux命令 - iostat 工具概述 iostat&#xff08;I/O Statistics&#xff09;是Linux系统下用于监视系统输入输出设备和CPU使…...

Qt Http Server模块功能及架构

Qt Http Server 是 Qt 6.0 中引入的一个新模块&#xff0c;它提供了一个轻量级的 HTTP 服务器实现&#xff0c;主要用于构建基于 HTTP 的应用程序和服务。 功能介绍&#xff1a; 主要功能 HTTP服务器功能&#xff1a; 支持 HTTP/1.1 协议 简单的请求/响应处理模型 支持 GET…...

ServerTrust 并非唯一

NSURLAuthenticationMethodServerTrust 只是 authenticationMethod 的冰山一角 要理解 NSURLAuthenticationMethodServerTrust, 首先要明白它只是 authenticationMethod 的选项之一, 并非唯一 1 先厘清概念 点说明authenticationMethodURLAuthenticationChallenge.protectionS…...

优选算法第十二讲:队列 + 宽搜 优先级队列

优选算法第十二讲&#xff1a;队列 宽搜 && 优先级队列 1.N叉树的层序遍历2.二叉树的锯齿型层序遍历3.二叉树最大宽度4.在每个树行中找最大值5.优先级队列 -- 最后一块石头的重量6.数据流中的第K大元素7.前K个高频单词8.数据流的中位数 1.N叉树的层序遍历 2.二叉树的锯…...

Java毕业设计:WML信息查询与后端信息发布系统开发

JAVAWML信息查询与后端信息发布系统实现 一、系统概述 本系统基于Java和WML(无线标记语言)技术开发&#xff0c;实现了移动设备上的信息查询与后端信息发布功能。系统采用B/S架构&#xff0c;服务器端使用Java Servlet处理请求&#xff0c;数据库采用MySQL存储信息&#xff0…...

Proxmox Mail Gateway安装指南:从零开始配置高效邮件过滤系统

&#x1f49d;&#x1f49d;&#x1f49d;欢迎莅临我的博客&#xff0c;很高兴能够在这里和您见面&#xff01;希望您在这里可以感受到一份轻松愉快的氛围&#xff0c;不仅可以获得有趣的内容和知识&#xff0c;也可以畅所欲言、分享您的想法和见解。 推荐&#xff1a;「storms…...