当前位置: 首页 > news >正文

6.2 对角化矩阵(2)

五、不能对角化的矩阵

假设 λ \lambda λ A A A 的一个特征值,我们从两个方面发现这个事实:

  1. 特征向量(几何的): A x = λ x A\boldsymbol x=\lambda\boldsymbol x Ax=λx 有非零解。
  2. 特征值(代数的): A − λ I A-\lambda I AλI 的行列式为零。

数字 λ \lambda λ 可能是一个单一的特征值也可能是重复的特征值,我们想要知道它的重复数(multiplicity)。大多数特征值的重复度 M = 1 M=1 M=1(单一的特征值),有一条特征向量的直线,且 det ⁡ ( A − λ I ) \det(A-\lambda I) det(AλI) 没有多重因子。
但是也有一些例外的矩阵,它的特征值可能重复(repeated),则有两种不同的方式来计算它的重复度,对于每一个 λ \lambda λ 总是有 GM ≤ AM \textrm{GM}\leq \textrm{AM} GMAM

  1. ( 几何重数 Geometric Multiplicity = GM ) \color{blue}(几何重数\,\textrm{Geometric Multiplicity = GM})\kern 10pt (几何重数Geometric Multiplicity = GM)计算 λ \lambda λ 对应的无关特征向量的个数。则 GM \textrm{GM} GM 就是 A − λ I A-\lambda I AλI 零空间的维度。
  2. ( 代数重数 Algebraic Multiplicity = AM ) \color{blue}(代数重数\,\textrm{Algebraic Multiplicity = AM})\kern 10pt (代数重数Algebraic Multiplicity = AM) AM \textrm{AM} AM 计算的是 λ \lambda λ 在特征值中的重复次数,检验 det ⁡ ( A − λ I ) = 0 \det(A-\lambda I)=0 det(AλI)=0 n n n 个根。

如果 A A A 有特征值 λ = 4 , 4 , 4 \lambda=4,4,4 λ=4,4,4,则特征值有 AM = 3 \textrm{AM}=3 AM=3,且 GM = 1 , 2 \textrm{GM} = 1,2 GM=1,2 3 3 3
下面的矩阵 A A A 是一个标准的麻烦例子,它的特征值 λ = 0 \lambda=0 λ=0 是重复的,这是一个双重特征值( AM = 2 \textrm{AM}=2 AM=2),但是只有一个特征向量 GM = 1 \textrm{GM}=1 GM=1 AM = 2 GM = 1 A = [ 0 1 0 0 ] 有 det ⁡ ( A − λ I ) = ∣ − λ 1 0 − λ ∣ = λ 2 λ = 0 , 0 但是只 有 1 个特征向量 \begin{matrix}\pmb{\textrm{AM}=2}\\\pmb{\textrm{GM}=1}\end{matrix}\kern 15ptA=\begin{bmatrix}0&1\\0&0\end{bmatrix}\,有\,\det(A-\lambda I)=\begin{vmatrix}-\lambda&1\\0&-\lambda\end{vmatrix}=\lambda^2\kern 15pt\begin{matrix}\pmb{\lambda=0,0\,但是只}\\\pmb{有\,1\,个特征向量}\end{matrix} AM=2GM=1A=[0010]det(AλI)= λ01λ =λ2λ=0,0但是只1个特征向量由于 λ 2 = 0 \lambda^2=0 λ2=0 有双重根,所以理论上应该有两个特征向量,双重因子 λ 2 \lambda^2 λ2 使得 AM = 2 \textrm{AM}=2 AM=2,但是只有 1 1 1 个特征向量 x = ( 1 , 0 ) \boldsymbol x=(1,0) x=(1,0) GM = 1 \textrm{GM}=1 GM=1 GM \textrm{GM} GM 小于 AM \textrm{AM} AM 时,此时特征向量的不足使得 A A A 无法对角化。
下面的三个矩阵同样是特征向量不足,它们重复的特征值是 λ = 5 \lambda=5 λ=5,迹是 10 10 10 行列式是 25 25 25 A = [ 5 1 0 5 ] 和 A = [ 6 − 1 1 4 ] 和 A = [ 7 2 − 2 3 ] A=\begin{bmatrix}5&1\\0&5\end{bmatrix}\kern 5pt和\kern 5ptA=\begin{bmatrix}6&-1\\1&\kern 7pt4\end{bmatrix}\kern 5pt和\kern 5ptA=\begin{bmatrix}\kern 7pt7&2\\-2&3\end{bmatrix} A=[5015]A=[6114]A=[7223]这三个矩阵都有 det ⁡ ( A − λ I ) = ( λ − 5 ) 2 \det(A-\lambda I)=(\lambda-5)^2 det(AλI)=(λ5)2,代数重数是 AM = 2 \textrm{AM}=2 AM=2,但是每个 A − 5 I A-5I A5I 的秩都为 1 1 1,所以几何重数是 GM = 1 \textrm{GM}=1 GM=1。对应 λ = 5 \lambda=5 λ=5 的只有一条特征向量的直线,这些矩阵都不能对角化。

六、主要内容总结

  1. 如果 A A A n n n 个无关的特征向量 x 1 , x 2 , ⋯ , x n \boldsymbol x_1,\boldsymbol x_2,\cdots,\boldsymbol x_n x1,x2,,xn,它们进入到 X X X 的列。 A 被 X 对角化 X − 1 A X = Λ 和 A = X Λ X − 1 \pmb{A\,被\,X\,对角化}\kern 15ptX^{-1}AX=\Lambda\kern 5pt和\kern 5ptA=X\Lambda X^{-1} AX对角化X1AX=ΛA=XΛX1
  2. A A A 的幂是 A k = X Λ k X − 1 A^k=X\Lambda^kX^{-1} Ak=XΛkX1,在 X X X 中的特征向量不变。
  3. A k A^k Ak 的特征值是矩阵 Λ k \Lambda^k Λk 中的 ( λ 1 ) k , ( λ 2 ) k , ⋯ , ( λ n ) k (\lambda_1)^k,(\lambda_2)^k,\cdots,(\lambda_n)^k (λ1)k,(λ2)k,,(λn)k
  4. u k + 1 = A u k \boldsymbol u_{k+1}=A\boldsymbol u_k uk+1=Auk u 0 \boldsymbol u_0 u0 开始的解是 u k = A k u 0 = X Λ k X − 1 u 0 \boldsymbol u_k=A^k\boldsymbol u_0=X\Lambda^kX^{-1}\boldsymbol u_0 uk=Aku0=XΛkX1u0
    由 u 0 = c 1 x 1 + c 2 x 2 + ⋯ + c n x n 得到 u k = c 1 ( λ 1 ) k x 1 + c 2 ( λ 2 ) k x 2 + ⋯ + c n ( λ n ) k x n 由\,{\color{blue}\boldsymbol u_0=c_1\boldsymbol x_1+c_2\boldsymbol x_2+\cdots+c_n\boldsymbol x_n}\,得到\,\color{blue}\boldsymbol u_k=c_1(\lambda_1)^k\boldsymbol x_1+c_2(\lambda_2)^k\boldsymbol x_2+\cdots+c_n(\lambda_n)^k\boldsymbol x_n u0=c1x1+c2x2++cnxn得到uk=c1(λ1)kx1+c2(λ2)kx2++cn(λn)kxn这展示了步骤 1 , 2 , 3 1,2,3 1,2,3,其中 c ′ s c's cs 来自于 X − 1 u 0 X^{-1}\boldsymbol u_0 X1u0 λ k \lambda^k λk 来自 Λ k \Lambda^k Λk x ′ s \boldsymbol x's xs 来自 X X X
  5. 如果 A A A 的每个特征值都有足够的特征向量( GM = AM \textrm{GM = AM} GM = AM),则 A A A 可以对角化。

七、例题

例4卢卡斯数字(Lucas numbers)除了从 L 1 = 1 L_1=1 L1=1 L 2 = 3 L_2=3 L2=3 开始之外,其它和斐波那契数一样。它们是同样的规则 L k + 2 = L k + 1 + L k L_{k+2}=L_{k+1}+L_k Lk+2=Lk+1+Lk,后面的卢卡斯数字是 4 , 7 , 11 , 18 4,7,11,18 4,7,11,18。证明卢卡斯数字 L 100 = λ 1 100 + λ 2 100 L_{100}=\lambda_1^{100}+\lambda_2^{100} L100=λ1100+λ2100
解: 和斐波那契数相同,也有 u k + 1 = [ 1 1 1 0 ] u k \boldsymbol u_{k+1}=\begin{bmatrix}1&1\\1&0\end{bmatrix}\boldsymbol u_k uk+1=[1110]uk,因为 L k + 2 = L k + 1 + L k L_{k+2}=L_{k+1}+L_k Lk+2=Lk+1+Lk 是同样的规则(只是不同的起始值),这个方程变成了 2 × 2 2\times2 2×2 的系统:

u k = [ L k + 1 L k ] \color{blue}\boldsymbol u_k=\begin{bmatrix}L_{k+1}\\\\L_k\end{bmatrix} uk= Lk+1Lk ,规则 L k + 2 = L k + 1 + L k L k + 1 = L k + 1 \begin{array}{l}L_{k+2}=L_{k+1}+L_k\\L_{k+1}=L_{k+1}\end{array} Lk+2=Lk+1+LkLk+1=Lk+1 u k + 1 = [ 1 1 1 0 ] u k \color{blue}\boldsymbol u_{k+1}=\begin{bmatrix}1&1\\\\1&0\end{bmatrix}\boldsymbol u_k uk+1= 1110 uk

A = [ 1 1 1 0 ] A=\begin{bmatrix}1&1\\1&0\end{bmatrix} A=[1110] 的特征向量和特征值仍然由 λ 2 = λ + 1 \lambda^2=\lambda+1 λ2=λ+1 得来: λ 1 = 1 + 5 2 和 x 1 = [ λ 1 1 ] λ 2 = 1 − 5 2 和 x 2 = [ λ 2 1 ] \lambda_1=\frac{1+\sqrt5}{2}\,和\,\boldsymbol x_1=\begin{bmatrix}\lambda_1\\1\end{bmatrix}\kern 15pt\lambda_2=\frac{1-\sqrt5}{2}\kern 5pt和\kern 5pt\boldsymbol x_2=\begin{bmatrix}\lambda_2\\1\end{bmatrix} λ1=21+5 x1=[λ11]λ2=215 x2=[λ21]现在求解 c 1 x 1 + c 2 x 2 = u 1 = ( 3 , 1 ) c_1\boldsymbol x_1+c_2\boldsymbol x_2=\boldsymbol u_1=(3,1) c1x1+c2x2=u1=(3,1),解是 c 1 = λ 1 c_1=\lambda_1 c1=λ1 c 2 = λ 2 c_2=\lambda_2 c2=λ2。检验: λ 1 x 1 + λ 2 x 2 = [ λ 1 2 + λ 2 2 λ 1 + λ 2 ] = [ A 2 的迹 A 的迹 ] = [ 3 1 ] = u 1 \lambda_1\boldsymbol x_1+\lambda_2\boldsymbol x_2=\begin{bmatrix}\lambda_1^2+\lambda^2_2\\\lambda_1+\lambda_2\end{bmatrix}=\begin{bmatrix}A^2\,的迹\\A\,的迹\end{bmatrix}=\begin{bmatrix}3\\1\end{bmatrix}=\boldsymbol u_1 λ1x1+λ2x2=[λ12+λ22λ1+λ2]=[A2的迹A的迹]=[31]=u1 u 100 = A 99 u 1 \boldsymbol u_{100}=A^{99}\boldsymbol u_1 u100=A99u1 我们可以得到卢卡斯数 ( L 101 , L 100 ) (L_{101},L_{100}) (L101,L100),特征向量 x 1 \boldsymbol x_1 x1 x 2 \boldsymbol x_2 x2 的第二个分量都是 1 1 1,所以 u 100 \boldsymbol u_{100} u100 的第二个分量是: 卢卡斯数字 L 100 = c 1 λ 1 99 + c 2 λ 2 99 = λ 1 100 + λ 2 100 \boxed{\pmb{卢卡斯数字}\kern 20pt\pmb{L_{100}}=c_1\lambda_1^{99}+c_2\lambda_2^{99}=\pmb{\lambda_1^{100}+\lambda_2^{100}}} 卢卡斯数字L100=c1λ199+c2λ299=λ1100+λ2100卢卡斯数字比斐波那契数开始的要快,最终也要大约 5 \sqrt5 5 倍。

例5】求矩阵 A A A 的逆矩阵、特征值和行列式: A = 5 ∗ eye ( 4 ) − ones ( 4 ) = [ 4 − 1 − 1 − 1 − 1 4 − 1 − 1 − 1 − 1 4 − 1 − 1 − 1 − 1 4 ] A=5*\textrm{\pmb{eye}}(4)-\textrm{\pmb{ones}}(4)=\begin{bmatrix}\kern 7pt4&-1&-1&-1\\-1&\kern 7pt4&-1&-1\\-1&-1&\kern 7pt4&-1\\-1&-1&-1&\kern 7pt4\end{bmatrix} A=5eye(4)ones(4)= 4111141111411114 描述一个特征向量矩阵 X X X,使 X − 1 A X = Λ X^{-1}AX=\Lambda X1AX=Λ
解: 1 1 1 矩阵的特征值是什么?它的秩为 1 1 1,所以三个特征值是 λ = 0 , 0 , 0 \lambda=0,0,0 λ=0,0,0,迹是 4 4 4,所以另一个特征值是 λ = 4 \lambda=4 λ=4,从 5 I 5I 5I 减去全 1 1 1 矩阵得到矩阵 A A A 从 5 , 5 , 5 , 5 减去特征值 4 , 0 , 0 , 0 得到 A 的特征值为 1 , 5 , 5 , 5 。 \color{blue}从\,5,5,5,5\,减去特征值\,4,0,0,0 \,得到\,A\, 的特征值为\,1,5,5,5。 5,5,5,5减去特征值4,0,0,0得到A的特征值为1,5,5,5 A A A 的行列式是四个特征值的乘积,即是 125 125 125 λ = 1 \lambda=1 λ=1 对应的特征向量是 x = ( 1 , 1 , 1 , 1 ) \boldsymbol x=(1,1,1,1) x=(1,1,1,1) ( c , c , c , c ) (c,c,c,c) (c,c,c,c),由于 A A A 是对称矩阵,所以其它的特征向量都垂直于 x \boldsymbol x x。最漂亮的特征向量矩阵 X X X 是对称的正交哈达玛矩阵(Hadamard matrix) H H H 乘上 1 2 \displaystyle\frac{1}{2} 21 得到单位列向量。 标准正交特征向量 X = H = 1 2 [ 1 1 1 1 1 − 1 1 − 1 1 1 − 1 − 1 1 − 1 − 1 1 ] = H T = H − 1 \pmb{标准正交特征向量}\kern 10ptX=H=\frac{1}{2}\begin{bmatrix}1&\kern 7pt1&\kern 7pt1&\kern 7pt1\\1&-1&\kern 7pt1&-1\\1&\kern 7pt1&-1&-1\\1&-1&-1&\kern 7pt1\end{bmatrix}=H^T=H^{-1} 标准正交特征向量X=H=21 1111111111111111 =HT=H1 A − 1 A^{-1} A1 的特征值是 1 , 1 5 , 1 5 , 1 5 1,\displaystyle\frac{1}{5},\frac{1}{5},\frac{1}{5} 1,51,51,51,特征向量不变,所以 A − 1 = H Λ − 1 H − 1 A^{-1}=H\Lambda^{-1}H^{-1} A1=HΛ1H1,逆矩阵惊人的简洁: A − 1 = 1 5 ∗ ( eye ( 4 ) + ones ( 4 ) ) = 1 5 [ 2 1 1 1 1 2 1 1 1 1 2 1 1 1 1 2 ] A^{-1}=\frac{1}{5}*(\pmb{\textrm{eye}}(4)+\pmb{\textrm{ones}}(4))=\frac{1}{5}\begin{bmatrix}2&1&1&1\\1&2&1&1\\1&1&2&1\\1&1&1&2\end{bmatrix} A1=51(eye(4)+ones(4))=51 2111121111211112 A A A 是由 5 I 5I 5I 变化来的秩一矩阵,所以 A − 1 A^{-1} A1 是由 I / 5 I/5 I/5 变化来的秩一矩阵。
在一个有 5 5 5 个节点的图中,行列式 125 125 125 是生成树(spanning trees,接触所有的节点)的个数,树没有回路。
如果有 6 6 6 个节点,矩阵 6 ∗ eye ( 5 ) − ones ( 5 ) 6*\pmb{\textrm{eye}}(5)-\pmb{\textrm{ones}}(5) 6eye(5)ones(5) 5 5 5 个特征值 1 , 6 , 6 , 6 , 6 1,6,6,6,6 1,6,6,6,6

相关文章:

6.2 对角化矩阵(2)

五、不能对角化的矩阵 假设 λ \lambda λ 是 A A A 的一个特征值,我们从两个方面发现这个事实: 特征向量(几何的): A x λ x A\boldsymbol x\lambda\boldsymbol x Axλx 有非零解。特征值(代数的&…...

ubuntu24.04播放语音视频

直接打开ubuntu自带的video播放.mp4文件,弹窗报错如下: 播放此影片需要插件 MPEG-4 AAC 编码器安装方式: sudo apt install gstreamer1.0-plugins-good gstreamer1.0-plugins-bad gstreamer1.0-plugins-ugly sudo apt install ffmpeg验证AA…...

GPT4的下一代Orion已经降速了?

嘿,大家好,我是小索奇!说起AI,相信不少人都和我一样,总感觉这玩意儿发展得就像装了火箭,快得让人眼花缭乱。咱们从GPT-3到GPT-4,一路哇哦着过来,天天惊叹它越来越聪明,越…...

SpringCloud框架学习(第二部分:Consul、LoadBalancer和openFeign)

目录 六、Consul服务注册和发现 1.基本介绍 2.下载运行 3.服务注册与发现 (1)支付服务provider8001注册进consul (2)修改订单服务cloud-consumer-order80 4.CAP (1)CAP理论 (2&#x…...

Linux 批量配置互信

批量配置SSH互信脚本 #!/bin/bash# 定义目标机器列表 machines( "192.168.122.87" "192.168.122.89" "192.168.122.90" ) set -o errexit # 设置默认的用户名和密码 default_username"root" default_password"111111"# 读取…...

设计定长的内存池

目录 定长内存池设计设计思路具体实现定长内存池初始化T*New()申请内存代码 void Delete(T* obj)回收内存代码 设计的总代码测试代码 Objectpool.h文件代码test.cpp文件代码拓展windows和Linux下如何直接向堆申请页为单位的大块内存: 感谢各位大佬对我的支持,如果我…...

【动手学电机驱动】 STM32-FOC(7)基于 MCSDK6.0 控制与调试速度环

STM32-FOC(1)STM32 电机控制的软件开发环境 STM32-FOC(2)STM32 导入和创建项目 STM32-FOC(3)STM32 三路互补 PWM 输出 STM32-FOC(4)IHM03 电机控制套件介绍 STM32-FOC(5&…...

无人机飞手考证,地面站培训技术详解

无人机飞手考证及地面站培训技术涉及多个关键方面,以下是对这些方面的详细解析: 一、无人机飞手考证流程与要求 1. 证书类型 民用无人机驾驶员证书:这是国家民航局颁发的无人机操作人员资质证书,分为视距内驾驶员、超视距驾驶员…...

音视频入门基础:MPEG2-TS专题(3)——TS Header简介

注:本文有部分内容引用了维基百科:https://zh.wikipedia.org/wiki/MPEG2-TS 一、引言 本文对MPEG2-TS格式的TS Header进行简介。 进行简介之前,请各位先下载MPEG2-TS的官方文档。ITU-T和ISO/IEC都分别提供MPEG2-TS的官方文档。但是ITU提供的…...

Sam Altman:年底将有重磅更新,但不是GPT-5!

大家好,我是木易,一个持续关注AI领域的互联网技术产品经理,国内Top2本科,美国Top10 CS研究生,MBA。我坚信AI是普通人变强的“外挂”,专注于分享AI全维度知识,包括但不限于AI科普,AI工…...

基于物联网的智能超市快速结算系统

摘 要 当今社会的商品层出不穷,人们因为越来越多大型仓储超市的出现使得生活更加便利,但许多随之而来的新问题也给人们带来了许多的不便,例如商家一直被更换标签不及时、货物丢失、超市内物品更换处理不及时、超市内人流高峰期人流控制不得…...

241111.学习日志——[CSDIY] Cpp零基础速成 [00]

CSDIY:这是一个非科班学生的努力之路,从今天开始这个系列会长期更新,(最好做到日更),我会慢慢把自己目前对CS的努力逐一上传,帮助那些和我一样有着梦想的玩家取得胜利!!&…...

湘潭大学软件工程算法设计与分析实验-模拟退火算法

文章目录 写在前面代码分析 写在前面 总共是要四份代码,好像都是实现背包问题,前面三个都比较简单直观,朋友上周在机房给我讲解了一下之后,我大概弄清楚了,这周好像是最后一次算法课了,所以明天我得把剩下…...

Three.js 零基础+概念理解

文章目录 一、Three.js基础概念(一)什么是Three.js(二)核心对象(三)几何体(Geometries)和材质(Materials) 二、基础实例应用(一)创建一…...

c#使用COM接口设置excel单元格宽高匹配图片,如何计算?

c#使用COM接口设置excel单元格宽高如何换算 在实际工作中,经常需要在excel中插入图片。并设置单元格与图片对齐。但是excel单元格的宽度和高度使用不同的单位。单元格的宽度以字符宽度为单位,而高度以点为单位。如果按照实际值来设置,例如设…...

Excel模板下载\数据导出

pom <dependency><groupId>org.apache.poi</groupId><artifactId>poi-ooxml</artifactId><version>4.1.2</version> </dependency><build><resources><resource><!--将xlsx打包到jar--><director…...

Vite初始化Vue3+Typescrpt项目

初始化项目 安装 Vite 首先&#xff0c;确保你的 Node.js 版本 > 12.0.0。然后在命令行中运行以下命令来创建一个 Vite Vue 3 TypeScript 的项目模板&#xff1a; npm init vitelatest进入项目目录 创建完成后&#xff0c;进入项目目录&#xff1a; cd vue3-demo启动…...

深入剖析【C++继承】:单一继承与多重继承的策略与实践,解锁代码复用和多态的编程精髓,迈向高级C++编程之旅

​​​​​​​ &#x1f31f;个人主页&#xff1a;落叶 &#x1f31f;当前专栏: C专栏 目录 继承的概念及定义 继承的概念 继承定义 定义格式 继承基类成员访问⽅式的变化 继承类模板 基类和派⽣类间的转换 继承中的作⽤域 隐藏规则 成员函数的隐藏 考察继承【作⽤…...

地级市能源消耗数据(2006至2021)含原始数据、计算过程、计算结果-最新出炉

能源消耗数据分析-2006-2021年地级市能源消耗数据&#xff08;原始数据计算过程结果&#xff09; 下载链接-点它&#x1f449;&#x1f449;&#x1f449;&#xff1a;https://download.csdn.net/download/qq_67479387/89911272 全国能源消耗概况 2021年&#xff0c;我国单位…...

MySQL技巧之跨服务器数据查询:基础篇-A数据库与B数据库查询合并

MySQL技巧之跨服务器数据查询&#xff1a;基础篇-A数据库与B数据库查询合并 上一篇已经描述&#xff1a;借用微软的SQL Server ODBC 即可实现MySQL跨服务器间的数据查询。 而且还介绍了如何获得一个在MS SQL Server 可以连接指定实例的MySQL数据库的链接名: MY_ODBC_MYSQL 以…...

Spark 之 入门讲解详细版(1)

1、简介 1.1 Spark简介 Spark是加州大学伯克利分校AMP实验室&#xff08;Algorithms, Machines, and People Lab&#xff09;开发通用内存并行计算框架。Spark在2013年6月进入Apache成为孵化项目&#xff0c;8个月后成为Apache顶级项目&#xff0c;速度之快足见过人之处&…...

什么是Ansible Jinja2

理解 Ansible Jinja2 模板 Ansible 是一款功能强大的开源自动化工具&#xff0c;可让您无缝地管理和配置系统。Ansible 的一大亮点是它使用 Jinja2 模板&#xff0c;允许您根据变量数据动态生成文件、配置设置和脚本。本文将向您介绍 Ansible 中的 Jinja2 模板&#xff0c;并通…...

.Net Framework 4/C# 关键字(非常用,持续更新...)

一、is 关键字 is 关键字用于检查对象是否于给定类型兼容,如果兼容将返回 true,如果不兼容则返回 false,在进行类型转换前,可以先使用 is 关键字判断对象是否与指定类型兼容,如果兼容才进行转换,这样的转换是安全的。 例如有:首先创建一个字符串对象,然后将字符串对象隐…...

在web-view 加载的本地及远程HTML中调用uniapp的API及网页和vue页面是如何通讯的?

uni-app 中 Web-view 与 Vue 页面的通讯机制详解 一、Web-view 简介 Web-view 是 uni-app 提供的一个重要组件&#xff0c;用于在原生应用中加载 HTML 页面&#xff1a; 支持加载本地 HTML 文件支持加载远程 HTML 页面实现 Web 与原生的双向通讯可用于嵌入第三方网页或 H5 应…...

安全突围:重塑内生安全体系:齐向东在2025年BCS大会的演讲

文章目录 前言第一部分&#xff1a;体系力量是突围之钥第一重困境是体系思想落地不畅。第二重困境是大小体系融合瓶颈。第三重困境是“小体系”运营梗阻。 第二部分&#xff1a;体系矛盾是突围之障一是数据孤岛的障碍。二是投入不足的障碍。三是新旧兼容难的障碍。 第三部分&am…...

CSS | transition 和 transform的用处和区别

省流总结&#xff1a; transform用于变换/变形&#xff0c;transition是动画控制器 transform 用来对元素进行变形&#xff0c;常见的操作如下&#xff0c;它是立即生效的样式变形属性。 旋转 rotate(角度deg)、平移 translateX(像素px)、缩放 scale(倍数)、倾斜 skewX(角度…...

Razor编程中@Html的方法使用大全

文章目录 1. 基础HTML辅助方法1.1 Html.ActionLink()1.2 Html.RouteLink()1.3 Html.Display() / Html.DisplayFor()1.4 Html.Editor() / Html.EditorFor()1.5 Html.Label() / Html.LabelFor()1.6 Html.TextBox() / Html.TextBoxFor() 2. 表单相关辅助方法2.1 Html.BeginForm() …...

iview框架主题色的应用

1.下载 less要使用3.0.0以下的版本 npm install less2.7.3 npm install less-loader4.0.52./src/config/theme.js文件 module.exports {yellow: {theme-color: #FDCE04},blue: {theme-color: #547CE7} }在sass中使用theme配置的颜色主题&#xff0c;无需引入&#xff0c;直接可…...

Kafka主题运维全指南:从基础配置到故障处理

#作者&#xff1a;张桐瑞 文章目录 主题日常管理1. 修改主题分区。2. 修改主题级别参数。3. 变更副本数。4. 修改主题限速。5.主题分区迁移。6. 常见主题错误处理常见错误1&#xff1a;主题删除失败。常见错误2&#xff1a;__consumer_offsets占用太多的磁盘。 主题日常管理 …...

从零开始了解数据采集(二十八)——制造业数字孪生

近年来&#xff0c;我国的工业领域正经历一场前所未有的数字化变革&#xff0c;从“双碳目标”到工业互联网平台的推广&#xff0c;国家政策和市场需求共同推动了制造业的升级。在这场变革中&#xff0c;数字孪生技术成为备受关注的关键工具&#xff0c;它不仅让企业“看见”设…...