当前位置: 首页 > news >正文

6.2 对角化矩阵(2)

五、不能对角化的矩阵

假设 λ \lambda λ A A A 的一个特征值,我们从两个方面发现这个事实:

  1. 特征向量(几何的): A x = λ x A\boldsymbol x=\lambda\boldsymbol x Ax=λx 有非零解。
  2. 特征值(代数的): A − λ I A-\lambda I AλI 的行列式为零。

数字 λ \lambda λ 可能是一个单一的特征值也可能是重复的特征值,我们想要知道它的重复数(multiplicity)。大多数特征值的重复度 M = 1 M=1 M=1(单一的特征值),有一条特征向量的直线,且 det ⁡ ( A − λ I ) \det(A-\lambda I) det(AλI) 没有多重因子。
但是也有一些例外的矩阵,它的特征值可能重复(repeated),则有两种不同的方式来计算它的重复度,对于每一个 λ \lambda λ 总是有 GM ≤ AM \textrm{GM}\leq \textrm{AM} GMAM

  1. ( 几何重数 Geometric Multiplicity = GM ) \color{blue}(几何重数\,\textrm{Geometric Multiplicity = GM})\kern 10pt (几何重数Geometric Multiplicity = GM)计算 λ \lambda λ 对应的无关特征向量的个数。则 GM \textrm{GM} GM 就是 A − λ I A-\lambda I AλI 零空间的维度。
  2. ( 代数重数 Algebraic Multiplicity = AM ) \color{blue}(代数重数\,\textrm{Algebraic Multiplicity = AM})\kern 10pt (代数重数Algebraic Multiplicity = AM) AM \textrm{AM} AM 计算的是 λ \lambda λ 在特征值中的重复次数,检验 det ⁡ ( A − λ I ) = 0 \det(A-\lambda I)=0 det(AλI)=0 n n n 个根。

如果 A A A 有特征值 λ = 4 , 4 , 4 \lambda=4,4,4 λ=4,4,4,则特征值有 AM = 3 \textrm{AM}=3 AM=3,且 GM = 1 , 2 \textrm{GM} = 1,2 GM=1,2 3 3 3
下面的矩阵 A A A 是一个标准的麻烦例子,它的特征值 λ = 0 \lambda=0 λ=0 是重复的,这是一个双重特征值( AM = 2 \textrm{AM}=2 AM=2),但是只有一个特征向量 GM = 1 \textrm{GM}=1 GM=1 AM = 2 GM = 1 A = [ 0 1 0 0 ] 有 det ⁡ ( A − λ I ) = ∣ − λ 1 0 − λ ∣ = λ 2 λ = 0 , 0 但是只 有 1 个特征向量 \begin{matrix}\pmb{\textrm{AM}=2}\\\pmb{\textrm{GM}=1}\end{matrix}\kern 15ptA=\begin{bmatrix}0&1\\0&0\end{bmatrix}\,有\,\det(A-\lambda I)=\begin{vmatrix}-\lambda&1\\0&-\lambda\end{vmatrix}=\lambda^2\kern 15pt\begin{matrix}\pmb{\lambda=0,0\,但是只}\\\pmb{有\,1\,个特征向量}\end{matrix} AM=2GM=1A=[0010]det(AλI)= λ01λ =λ2λ=0,0但是只1个特征向量由于 λ 2 = 0 \lambda^2=0 λ2=0 有双重根,所以理论上应该有两个特征向量,双重因子 λ 2 \lambda^2 λ2 使得 AM = 2 \textrm{AM}=2 AM=2,但是只有 1 1 1 个特征向量 x = ( 1 , 0 ) \boldsymbol x=(1,0) x=(1,0) GM = 1 \textrm{GM}=1 GM=1 GM \textrm{GM} GM 小于 AM \textrm{AM} AM 时,此时特征向量的不足使得 A A A 无法对角化。
下面的三个矩阵同样是特征向量不足,它们重复的特征值是 λ = 5 \lambda=5 λ=5,迹是 10 10 10 行列式是 25 25 25 A = [ 5 1 0 5 ] 和 A = [ 6 − 1 1 4 ] 和 A = [ 7 2 − 2 3 ] A=\begin{bmatrix}5&1\\0&5\end{bmatrix}\kern 5pt和\kern 5ptA=\begin{bmatrix}6&-1\\1&\kern 7pt4\end{bmatrix}\kern 5pt和\kern 5ptA=\begin{bmatrix}\kern 7pt7&2\\-2&3\end{bmatrix} A=[5015]A=[6114]A=[7223]这三个矩阵都有 det ⁡ ( A − λ I ) = ( λ − 5 ) 2 \det(A-\lambda I)=(\lambda-5)^2 det(AλI)=(λ5)2,代数重数是 AM = 2 \textrm{AM}=2 AM=2,但是每个 A − 5 I A-5I A5I 的秩都为 1 1 1,所以几何重数是 GM = 1 \textrm{GM}=1 GM=1。对应 λ = 5 \lambda=5 λ=5 的只有一条特征向量的直线,这些矩阵都不能对角化。

六、主要内容总结

  1. 如果 A A A n n n 个无关的特征向量 x 1 , x 2 , ⋯ , x n \boldsymbol x_1,\boldsymbol x_2,\cdots,\boldsymbol x_n x1,x2,,xn,它们进入到 X X X 的列。 A 被 X 对角化 X − 1 A X = Λ 和 A = X Λ X − 1 \pmb{A\,被\,X\,对角化}\kern 15ptX^{-1}AX=\Lambda\kern 5pt和\kern 5ptA=X\Lambda X^{-1} AX对角化X1AX=ΛA=XΛX1
  2. A A A 的幂是 A k = X Λ k X − 1 A^k=X\Lambda^kX^{-1} Ak=XΛkX1,在 X X X 中的特征向量不变。
  3. A k A^k Ak 的特征值是矩阵 Λ k \Lambda^k Λk 中的 ( λ 1 ) k , ( λ 2 ) k , ⋯ , ( λ n ) k (\lambda_1)^k,(\lambda_2)^k,\cdots,(\lambda_n)^k (λ1)k,(λ2)k,,(λn)k
  4. u k + 1 = A u k \boldsymbol u_{k+1}=A\boldsymbol u_k uk+1=Auk u 0 \boldsymbol u_0 u0 开始的解是 u k = A k u 0 = X Λ k X − 1 u 0 \boldsymbol u_k=A^k\boldsymbol u_0=X\Lambda^kX^{-1}\boldsymbol u_0 uk=Aku0=XΛkX1u0
    由 u 0 = c 1 x 1 + c 2 x 2 + ⋯ + c n x n 得到 u k = c 1 ( λ 1 ) k x 1 + c 2 ( λ 2 ) k x 2 + ⋯ + c n ( λ n ) k x n 由\,{\color{blue}\boldsymbol u_0=c_1\boldsymbol x_1+c_2\boldsymbol x_2+\cdots+c_n\boldsymbol x_n}\,得到\,\color{blue}\boldsymbol u_k=c_1(\lambda_1)^k\boldsymbol x_1+c_2(\lambda_2)^k\boldsymbol x_2+\cdots+c_n(\lambda_n)^k\boldsymbol x_n u0=c1x1+c2x2++cnxn得到uk=c1(λ1)kx1+c2(λ2)kx2++cn(λn)kxn这展示了步骤 1 , 2 , 3 1,2,3 1,2,3,其中 c ′ s c's cs 来自于 X − 1 u 0 X^{-1}\boldsymbol u_0 X1u0 λ k \lambda^k λk 来自 Λ k \Lambda^k Λk x ′ s \boldsymbol x's xs 来自 X X X
  5. 如果 A A A 的每个特征值都有足够的特征向量( GM = AM \textrm{GM = AM} GM = AM),则 A A A 可以对角化。

七、例题

例4卢卡斯数字(Lucas numbers)除了从 L 1 = 1 L_1=1 L1=1 L 2 = 3 L_2=3 L2=3 开始之外,其它和斐波那契数一样。它们是同样的规则 L k + 2 = L k + 1 + L k L_{k+2}=L_{k+1}+L_k Lk+2=Lk+1+Lk,后面的卢卡斯数字是 4 , 7 , 11 , 18 4,7,11,18 4,7,11,18。证明卢卡斯数字 L 100 = λ 1 100 + λ 2 100 L_{100}=\lambda_1^{100}+\lambda_2^{100} L100=λ1100+λ2100
解: 和斐波那契数相同,也有 u k + 1 = [ 1 1 1 0 ] u k \boldsymbol u_{k+1}=\begin{bmatrix}1&1\\1&0\end{bmatrix}\boldsymbol u_k uk+1=[1110]uk,因为 L k + 2 = L k + 1 + L k L_{k+2}=L_{k+1}+L_k Lk+2=Lk+1+Lk 是同样的规则(只是不同的起始值),这个方程变成了 2 × 2 2\times2 2×2 的系统:

u k = [ L k + 1 L k ] \color{blue}\boldsymbol u_k=\begin{bmatrix}L_{k+1}\\\\L_k\end{bmatrix} uk= Lk+1Lk ,规则 L k + 2 = L k + 1 + L k L k + 1 = L k + 1 \begin{array}{l}L_{k+2}=L_{k+1}+L_k\\L_{k+1}=L_{k+1}\end{array} Lk+2=Lk+1+LkLk+1=Lk+1 u k + 1 = [ 1 1 1 0 ] u k \color{blue}\boldsymbol u_{k+1}=\begin{bmatrix}1&1\\\\1&0\end{bmatrix}\boldsymbol u_k uk+1= 1110 uk

A = [ 1 1 1 0 ] A=\begin{bmatrix}1&1\\1&0\end{bmatrix} A=[1110] 的特征向量和特征值仍然由 λ 2 = λ + 1 \lambda^2=\lambda+1 λ2=λ+1 得来: λ 1 = 1 + 5 2 和 x 1 = [ λ 1 1 ] λ 2 = 1 − 5 2 和 x 2 = [ λ 2 1 ] \lambda_1=\frac{1+\sqrt5}{2}\,和\,\boldsymbol x_1=\begin{bmatrix}\lambda_1\\1\end{bmatrix}\kern 15pt\lambda_2=\frac{1-\sqrt5}{2}\kern 5pt和\kern 5pt\boldsymbol x_2=\begin{bmatrix}\lambda_2\\1\end{bmatrix} λ1=21+5 x1=[λ11]λ2=215 x2=[λ21]现在求解 c 1 x 1 + c 2 x 2 = u 1 = ( 3 , 1 ) c_1\boldsymbol x_1+c_2\boldsymbol x_2=\boldsymbol u_1=(3,1) c1x1+c2x2=u1=(3,1),解是 c 1 = λ 1 c_1=\lambda_1 c1=λ1 c 2 = λ 2 c_2=\lambda_2 c2=λ2。检验: λ 1 x 1 + λ 2 x 2 = [ λ 1 2 + λ 2 2 λ 1 + λ 2 ] = [ A 2 的迹 A 的迹 ] = [ 3 1 ] = u 1 \lambda_1\boldsymbol x_1+\lambda_2\boldsymbol x_2=\begin{bmatrix}\lambda_1^2+\lambda^2_2\\\lambda_1+\lambda_2\end{bmatrix}=\begin{bmatrix}A^2\,的迹\\A\,的迹\end{bmatrix}=\begin{bmatrix}3\\1\end{bmatrix}=\boldsymbol u_1 λ1x1+λ2x2=[λ12+λ22λ1+λ2]=[A2的迹A的迹]=[31]=u1 u 100 = A 99 u 1 \boldsymbol u_{100}=A^{99}\boldsymbol u_1 u100=A99u1 我们可以得到卢卡斯数 ( L 101 , L 100 ) (L_{101},L_{100}) (L101,L100),特征向量 x 1 \boldsymbol x_1 x1 x 2 \boldsymbol x_2 x2 的第二个分量都是 1 1 1,所以 u 100 \boldsymbol u_{100} u100 的第二个分量是: 卢卡斯数字 L 100 = c 1 λ 1 99 + c 2 λ 2 99 = λ 1 100 + λ 2 100 \boxed{\pmb{卢卡斯数字}\kern 20pt\pmb{L_{100}}=c_1\lambda_1^{99}+c_2\lambda_2^{99}=\pmb{\lambda_1^{100}+\lambda_2^{100}}} 卢卡斯数字L100=c1λ199+c2λ299=λ1100+λ2100卢卡斯数字比斐波那契数开始的要快,最终也要大约 5 \sqrt5 5 倍。

例5】求矩阵 A A A 的逆矩阵、特征值和行列式: A = 5 ∗ eye ( 4 ) − ones ( 4 ) = [ 4 − 1 − 1 − 1 − 1 4 − 1 − 1 − 1 − 1 4 − 1 − 1 − 1 − 1 4 ] A=5*\textrm{\pmb{eye}}(4)-\textrm{\pmb{ones}}(4)=\begin{bmatrix}\kern 7pt4&-1&-1&-1\\-1&\kern 7pt4&-1&-1\\-1&-1&\kern 7pt4&-1\\-1&-1&-1&\kern 7pt4\end{bmatrix} A=5eye(4)ones(4)= 4111141111411114 描述一个特征向量矩阵 X X X,使 X − 1 A X = Λ X^{-1}AX=\Lambda X1AX=Λ
解: 1 1 1 矩阵的特征值是什么?它的秩为 1 1 1,所以三个特征值是 λ = 0 , 0 , 0 \lambda=0,0,0 λ=0,0,0,迹是 4 4 4,所以另一个特征值是 λ = 4 \lambda=4 λ=4,从 5 I 5I 5I 减去全 1 1 1 矩阵得到矩阵 A A A 从 5 , 5 , 5 , 5 减去特征值 4 , 0 , 0 , 0 得到 A 的特征值为 1 , 5 , 5 , 5 。 \color{blue}从\,5,5,5,5\,减去特征值\,4,0,0,0 \,得到\,A\, 的特征值为\,1,5,5,5。 5,5,5,5减去特征值4,0,0,0得到A的特征值为1,5,5,5 A A A 的行列式是四个特征值的乘积,即是 125 125 125 λ = 1 \lambda=1 λ=1 对应的特征向量是 x = ( 1 , 1 , 1 , 1 ) \boldsymbol x=(1,1,1,1) x=(1,1,1,1) ( c , c , c , c ) (c,c,c,c) (c,c,c,c),由于 A A A 是对称矩阵,所以其它的特征向量都垂直于 x \boldsymbol x x。最漂亮的特征向量矩阵 X X X 是对称的正交哈达玛矩阵(Hadamard matrix) H H H 乘上 1 2 \displaystyle\frac{1}{2} 21 得到单位列向量。 标准正交特征向量 X = H = 1 2 [ 1 1 1 1 1 − 1 1 − 1 1 1 − 1 − 1 1 − 1 − 1 1 ] = H T = H − 1 \pmb{标准正交特征向量}\kern 10ptX=H=\frac{1}{2}\begin{bmatrix}1&\kern 7pt1&\kern 7pt1&\kern 7pt1\\1&-1&\kern 7pt1&-1\\1&\kern 7pt1&-1&-1\\1&-1&-1&\kern 7pt1\end{bmatrix}=H^T=H^{-1} 标准正交特征向量X=H=21 1111111111111111 =HT=H1 A − 1 A^{-1} A1 的特征值是 1 , 1 5 , 1 5 , 1 5 1,\displaystyle\frac{1}{5},\frac{1}{5},\frac{1}{5} 1,51,51,51,特征向量不变,所以 A − 1 = H Λ − 1 H − 1 A^{-1}=H\Lambda^{-1}H^{-1} A1=HΛ1H1,逆矩阵惊人的简洁: A − 1 = 1 5 ∗ ( eye ( 4 ) + ones ( 4 ) ) = 1 5 [ 2 1 1 1 1 2 1 1 1 1 2 1 1 1 1 2 ] A^{-1}=\frac{1}{5}*(\pmb{\textrm{eye}}(4)+\pmb{\textrm{ones}}(4))=\frac{1}{5}\begin{bmatrix}2&1&1&1\\1&2&1&1\\1&1&2&1\\1&1&1&2\end{bmatrix} A1=51(eye(4)+ones(4))=51 2111121111211112 A A A 是由 5 I 5I 5I 变化来的秩一矩阵,所以 A − 1 A^{-1} A1 是由 I / 5 I/5 I/5 变化来的秩一矩阵。
在一个有 5 5 5 个节点的图中,行列式 125 125 125 是生成树(spanning trees,接触所有的节点)的个数,树没有回路。
如果有 6 6 6 个节点,矩阵 6 ∗ eye ( 5 ) − ones ( 5 ) 6*\pmb{\textrm{eye}}(5)-\pmb{\textrm{ones}}(5) 6eye(5)ones(5) 5 5 5 个特征值 1 , 6 , 6 , 6 , 6 1,6,6,6,6 1,6,6,6,6

相关文章:

6.2 对角化矩阵(2)

五、不能对角化的矩阵 假设 λ \lambda λ 是 A A A 的一个特征值,我们从两个方面发现这个事实: 特征向量(几何的): A x λ x A\boldsymbol x\lambda\boldsymbol x Axλx 有非零解。特征值(代数的&…...

ubuntu24.04播放语音视频

直接打开ubuntu自带的video播放.mp4文件,弹窗报错如下: 播放此影片需要插件 MPEG-4 AAC 编码器安装方式: sudo apt install gstreamer1.0-plugins-good gstreamer1.0-plugins-bad gstreamer1.0-plugins-ugly sudo apt install ffmpeg验证AA…...

GPT4的下一代Orion已经降速了?

嘿,大家好,我是小索奇!说起AI,相信不少人都和我一样,总感觉这玩意儿发展得就像装了火箭,快得让人眼花缭乱。咱们从GPT-3到GPT-4,一路哇哦着过来,天天惊叹它越来越聪明,越…...

SpringCloud框架学习(第二部分:Consul、LoadBalancer和openFeign)

目录 六、Consul服务注册和发现 1.基本介绍 2.下载运行 3.服务注册与发现 (1)支付服务provider8001注册进consul (2)修改订单服务cloud-consumer-order80 4.CAP (1)CAP理论 (2&#x…...

Linux 批量配置互信

批量配置SSH互信脚本 #!/bin/bash# 定义目标机器列表 machines( "192.168.122.87" "192.168.122.89" "192.168.122.90" ) set -o errexit # 设置默认的用户名和密码 default_username"root" default_password"111111"# 读取…...

设计定长的内存池

目录 定长内存池设计设计思路具体实现定长内存池初始化T*New()申请内存代码 void Delete(T* obj)回收内存代码 设计的总代码测试代码 Objectpool.h文件代码test.cpp文件代码拓展windows和Linux下如何直接向堆申请页为单位的大块内存: 感谢各位大佬对我的支持,如果我…...

【动手学电机驱动】 STM32-FOC(7)基于 MCSDK6.0 控制与调试速度环

STM32-FOC(1)STM32 电机控制的软件开发环境 STM32-FOC(2)STM32 导入和创建项目 STM32-FOC(3)STM32 三路互补 PWM 输出 STM32-FOC(4)IHM03 电机控制套件介绍 STM32-FOC(5&…...

无人机飞手考证,地面站培训技术详解

无人机飞手考证及地面站培训技术涉及多个关键方面,以下是对这些方面的详细解析: 一、无人机飞手考证流程与要求 1. 证书类型 民用无人机驾驶员证书:这是国家民航局颁发的无人机操作人员资质证书,分为视距内驾驶员、超视距驾驶员…...

音视频入门基础:MPEG2-TS专题(3)——TS Header简介

注:本文有部分内容引用了维基百科:https://zh.wikipedia.org/wiki/MPEG2-TS 一、引言 本文对MPEG2-TS格式的TS Header进行简介。 进行简介之前,请各位先下载MPEG2-TS的官方文档。ITU-T和ISO/IEC都分别提供MPEG2-TS的官方文档。但是ITU提供的…...

Sam Altman:年底将有重磅更新,但不是GPT-5!

大家好,我是木易,一个持续关注AI领域的互联网技术产品经理,国内Top2本科,美国Top10 CS研究生,MBA。我坚信AI是普通人变强的“外挂”,专注于分享AI全维度知识,包括但不限于AI科普,AI工…...

基于物联网的智能超市快速结算系统

摘 要 当今社会的商品层出不穷,人们因为越来越多大型仓储超市的出现使得生活更加便利,但许多随之而来的新问题也给人们带来了许多的不便,例如商家一直被更换标签不及时、货物丢失、超市内物品更换处理不及时、超市内人流高峰期人流控制不得…...

241111.学习日志——[CSDIY] Cpp零基础速成 [00]

CSDIY:这是一个非科班学生的努力之路,从今天开始这个系列会长期更新,(最好做到日更),我会慢慢把自己目前对CS的努力逐一上传,帮助那些和我一样有着梦想的玩家取得胜利!!&…...

湘潭大学软件工程算法设计与分析实验-模拟退火算法

文章目录 写在前面代码分析 写在前面 总共是要四份代码,好像都是实现背包问题,前面三个都比较简单直观,朋友上周在机房给我讲解了一下之后,我大概弄清楚了,这周好像是最后一次算法课了,所以明天我得把剩下…...

Three.js 零基础+概念理解

文章目录 一、Three.js基础概念(一)什么是Three.js(二)核心对象(三)几何体(Geometries)和材质(Materials) 二、基础实例应用(一)创建一…...

c#使用COM接口设置excel单元格宽高匹配图片,如何计算?

c#使用COM接口设置excel单元格宽高如何换算 在实际工作中,经常需要在excel中插入图片。并设置单元格与图片对齐。但是excel单元格的宽度和高度使用不同的单位。单元格的宽度以字符宽度为单位,而高度以点为单位。如果按照实际值来设置,例如设…...

Excel模板下载\数据导出

pom <dependency><groupId>org.apache.poi</groupId><artifactId>poi-ooxml</artifactId><version>4.1.2</version> </dependency><build><resources><resource><!--将xlsx打包到jar--><director…...

Vite初始化Vue3+Typescrpt项目

初始化项目 安装 Vite 首先&#xff0c;确保你的 Node.js 版本 > 12.0.0。然后在命令行中运行以下命令来创建一个 Vite Vue 3 TypeScript 的项目模板&#xff1a; npm init vitelatest进入项目目录 创建完成后&#xff0c;进入项目目录&#xff1a; cd vue3-demo启动…...

深入剖析【C++继承】:单一继承与多重继承的策略与实践,解锁代码复用和多态的编程精髓,迈向高级C++编程之旅

​​​​​​​ &#x1f31f;个人主页&#xff1a;落叶 &#x1f31f;当前专栏: C专栏 目录 继承的概念及定义 继承的概念 继承定义 定义格式 继承基类成员访问⽅式的变化 继承类模板 基类和派⽣类间的转换 继承中的作⽤域 隐藏规则 成员函数的隐藏 考察继承【作⽤…...

地级市能源消耗数据(2006至2021)含原始数据、计算过程、计算结果-最新出炉

能源消耗数据分析-2006-2021年地级市能源消耗数据&#xff08;原始数据计算过程结果&#xff09; 下载链接-点它&#x1f449;&#x1f449;&#x1f449;&#xff1a;https://download.csdn.net/download/qq_67479387/89911272 全国能源消耗概况 2021年&#xff0c;我国单位…...

MySQL技巧之跨服务器数据查询:基础篇-A数据库与B数据库查询合并

MySQL技巧之跨服务器数据查询&#xff1a;基础篇-A数据库与B数据库查询合并 上一篇已经描述&#xff1a;借用微软的SQL Server ODBC 即可实现MySQL跨服务器间的数据查询。 而且还介绍了如何获得一个在MS SQL Server 可以连接指定实例的MySQL数据库的链接名: MY_ODBC_MYSQL 以…...

AutoSAR CP DoIP规范导读

主要功能和用途 诊断通信协议实现 遵循标准&#xff1a;遵循ISO 13400 - 2标准&#xff0c;实现了诊断通信在IP网络上的传输协议和网络层服务&#xff0c;包括数据封装、传输、路由等功能。 多种消息支持 车辆识别与公告&#xff1a;能够进行车辆识别请求和响应&#xff0c;…...

Window下PHP安装最新sg11(php5.3-php8.3)

链接: https://pan.baidu.com/s/10yyqTJdwH_oQJnQtWcwIeA 提取码: qz8y 复制这段内容后打开百度网盘手机App&#xff0c;操作更方便哦 (链接失效联系L88467872) 1.下载后解压文件&#xff0c;将对应版本的ixed.xx.win文件放进php对应的ext目录下&#xff0c;如图所示 2.修改ph…...

2024华为OD机试真题---中文分词模拟器

华为OD机试中的中文分词模拟器题目&#xff0c;通常要求考生对给定的不包含空格的字符串进行精确分词。这个字符串仅包含英文小写字母及英文标点符号&#xff08;如逗号、分号、句号等&#xff09;&#xff0c;同时会提供一个词库作为分词依据。以下是对这类题目的详细解析 一…...

Kubernetes网络揭秘:从DNS到核心概念,一站式综述

文章目录 一.overlay vs underlayL2 underlayL3 underlay 二、calico vs flannel2.1 calico架构2.2 flannel架构 三、iptables四、Vxlan五、kubernetes网络架构综述六、DNS七、Kubernetes域名解析策略 一.overlay vs underlay overlay网络是在传统网络上虚拟出一个虚拟网络&am…...

C#封装EPPlus库为Excel导出工具

1&#xff0c;添加NUGet包 2&#xff0c;封装工具类 using OfficeOpenXml; using System; using System.Collections.Generic; using System.IO; using System.Linq; using System.Reflection;namespace GMWPF.utils {public class ExcelUtil<T>{/// <summary>///…...

【LeetCode】【算法】461. 汉明距离

LeetCode 461. 汉明距离 题目描述 两个整数之间的 汉明距离 指的是这两个数字对应二进制位不同的位置的数目。 给你两个整数 x 和 y&#xff0c;计算并返回它们之间的汉明距离。 思路 思路&#xff1a;将两个数转成二进制后求异或结果&#xff0c;就是它们之间的汉明距离。…...

Docker Compose部署Rabbitmq(延迟插件已下载)

整个工具的代码都在Gitee或者Github地址内 gitee&#xff1a;solomon-parent: 这个项目主要是总结了工作上遇到的问题以及学习一些框架用于整合例如:rabbitMq、reids、Mqtt、S3协议的文件服务器、mongodb github&#xff1a;GitHub - ZeroNing/solomon-parent: 这个项目主要是…...

生信技能62 - 常用机器学习算法的R语言实现

1. 加载R包和数据 # 安装R包, 是否update统一选择不更新n BiocManager::install("caret") BiocManager::install("randomForest") BiocManager::install("gbm") BiocManager::install("kernlab") BiocManager::install("glmnet…...

【3D Slicer】的小白入门使用指南二

3D Slicer中DICOM数据加载和三维可视化 任务 数据集下载和解压缩 加载和查看DICOM数据 1)将第一个数据集文件夹,整个往3Dslicer左侧拖动即可 得到 2)选中右侧patient 1就可显示出该患者的基本信息 (第二行蓝色是研究信息;第三行蓝色是序列信息)...

部署搭建AI相关项目时,不用魔法也能轻松自动下载所需大模型

背景 最近搭建了许多AI相关的自动化服务&#xff0c;有些时候因为国内服务器墙了 huggingface.co 访问&#xff0c;导致一些依赖文件和模型下载不下来&#xff0c;手动去下载又特别麻烦&#xff0c;今天教你一个小招&#xff0c;轻松解决这个问题 开搞 1&#xff1a;首先确定…...