当前位置: 首页 > news >正文

为什么RNN(循环神经网络)存在梯度消失和梯度爆炸?

1️⃣ 原理分析

在这里插入图片描述
RNN前向传播的公式为:

  • x t x_t xt是t时刻的输入
  • s t s_t st是t时刻的记忆, s t = f ( U ⋅ x t + W ⋅ s t − 1 ) s_t=f(U\cdot x_t+W\cdot s_{t-1}) st=f(Uxt+Wst1),f表示激活函数, s t − 1 s_{t-1} st1表示t-1时刻的记忆
  • o t o_t ot是t时刻的输出, o t = s o f t m a x ( V ⋅ s t ) o_t=softmax(V\cdot s_t) ot=softmax(Vst)

采用交叉熵作为损失函数:
L = ∑ i = 1 T − o t ˉ l o g o t L=\sum_{i=1}^{T}-\bar{o_{t}}logo_{t} L=i=1Totˉlogot
其中T代表时间步的长度, o ˉ t \bar o_{t} oˉt代表ground truth, o t o_t ot代表预测的输出。

假设有三个时间步, t = 1 , 2 , 3 t=1,2,3 t=1,2,3。假设初始记忆 s t = 0 s_t=0 st=0,则 t = 1 t=1 t=1时的记忆和输出为:
s 1 = f ( U x 1 + W s 0 ) o 1 = f [ V ⋅ f ( U x 1 + W s 0 ) ] \begin{aligned}&s_1=f(Ux_1+Ws_0)\\&o_{1}=f[V\cdot f(Ux_{1}+Ws_{0})]\end{aligned} s1=f(Ux1+Ws0)o1=f[Vf(Ux1+Ws0)]
t = 2 t=2 t=2时的记忆和输出为:
s 2 = f ( U x 2 + W s 1 ) o 2 = f [ V ⋅ f ( U x 2 + W s 1 ) ] = f [ V ⋅ f ( U x 2 + W f ( U x 1 + W s 0 ) ) ] \begin{aligned}&s_2=f(Ux_2+Ws_1)\\&o_{2}=f[V\cdot f(Ux_{2}+Ws_{1})]=f[V\cdot f(Ux_{2}+Wf(Ux_1+Ws_0))]\end{aligned} s2=f(Ux2+Ws1)o2=f[Vf(Ux2+Ws1)]=f[Vf(Ux2+Wf(Ux1+Ws0))]

这样很晕,我来画个箭头:
在这里插入图片描述
可以发现 s 2 s_2 s2 s 1 s_1 s1的函数

t = 3 t=3 t=3时的记忆和输出为:
s 3 = f ( U x 3 + W s 2 ) o 3 = f [ V ⋅ f ( U x 3 + W s 2 ) ] = f [ V ⋅ f ( U x 3 + W f ( U x 2 + W s 1 ) ) ] = f [ V ⋅ f ( U x 3 + W f ( U x 2 + W f ( U x 1 + W s 0 ) ) ) ] \begin{aligned}&s_3=f(Ux_3+Ws_2)\\&o_{3}=f[V\cdot f(Ux_{3}+Ws_{2})]=f[V\cdot f(Ux_{3}+Wf(Ux_2+Ws_1))]=f[V\cdot f(Ux_{3}+Wf(Ux_2+Wf(Ux_1+Ws_0)))] \end{aligned} s3=f(Ux3+Ws2)o3=f[Vf(Ux3+Ws2)]=f[Vf(Ux3+Wf(Ux2+Ws1))]=f[Vf(Ux3+Wf(Ux2+Wf(Ux1+Ws0)))]
画个箭头:
在这里插入图片描述
可以发现 s 3 s_3 s3 s 2 s_2 s2的函数,又 s 2 s_2 s2 s 1 s_1 s1的函数,因此 s 3 s_3 s3包含 s 2 s_2 s2 s 1 s_1 s1

然后我们来分析反向传播:BPTT(Back-Propagation Through Time,时间上的反向传播)是针对RNN的训练算法,它的核心依然是基于梯度下降的反向传播。对于RNN来说,主要参数包括U、W和V。
在这里插入图片描述
以t=3时举例子,求U,V,W的梯度:
∂ L 3 ∂ V = ∂ L 3 ∂ o 3 ∂ o 3 ∂ V 3 ◯ ∂ L 3 ∂ W = ∂ L 3 ∂ o 3 ∂ o 3 ∂ s 3 ∂ s 3 ∂ W + ∂ L 3 ∂ o 3 ∂ o 3 ∂ s 2 ∂ s 2 ∂ W + ∂ L 3 ∂ o 3 ∂ o 3 ∂ s 3 ∂ s 3 ∂ s 2 ∂ s 2 ∂ s 1 ∂ s 1 ∂ W 4 ◯ ∂ L 3 ∂ U = ∂ L 3 ∂ o 3 ∂ o 3 ∂ s 3 ∂ s 3 ∂ U + ∂ L 3 ∂ o 3 ∂ o 3 ∂ s 2 ∂ s 2 ∂ U + ∂ L 3 ∂ o 3 ∂ o 3 ∂ s 3 ∂ s 3 ∂ s 2 ∂ s 2 ∂ s 1 ∂ s 1 ∂ U 5 ◯ \begin{aligned} &\frac{\partial L_3}{\partial V} =\frac{\partial L_3}{\partial o_3}\frac{\partial o_3}{\partial V}\textcircled{3} \\ &\frac{\partial L_3}{\partial W} =\frac{\partial L_3}{\partial o_3}\frac{\partial o_3}{\partial s_3}\frac{\partial s_3}{\partial W}+\frac{\partial L_3}{\partial o_3}\frac{\partial o_3}{\partial s_2}\frac{\partial s_2}{\partial W}+\frac{\partial L_3}{\partial o_3}\frac{\partial o_3}{\partial s_3}\frac{\partial s_3}{\partial s_2}\frac{\partial s_2}{\partial s_1}\frac{\partial s_1}{\partial W}\textcircled{4} \\ &\frac{\partial L_3}{\partial U} =\frac{\partial L_3}{\partial o_3}\frac{\partial o_3}{\partial s_3}\frac{\partial s_3}{\partial U}+\frac{\partial L_3}{\partial o_3}\frac{\partial o_3}{\partial s_2}\frac{\partial s_2}{\partial U}+\frac{\partial L_3}{\partial o_3}\frac{\partial o_3}{\partial s_3}\frac{\partial s_3}{\partial s_2}\frac{\partial s_2}{\partial s_1}\frac{\partial s_1}{\partial U}\textcircled{5} \end{aligned} VL3=o3L3Vo33WL3=o3L3s3o3Ws3+o3L3s2o3Ws2+o3L3s3o3s2s3s1s2Ws14UL3=o3L3s3o3Us3+o3L3s2o3Us2+o3L3s3o3s2s3s1s2Us15

对于公式⑤可以简写成:
∂ L 3 ∂ U = ∑ k = 0 3 ∂ L 3 ∂ o 3 ∂ o 3 ∂ s 3 ∂ s 3 ∂ s k ∂ s k ∂ U \frac{\partial L_3}{\partial U}=\sum_{k=0}^3\frac{\partial L_3}{\partial o_3}\frac{\partial o_3}{\partial s_3}\frac{\partial s_3}{\partial s_k}\frac{\partial s_k}{\partial U} UL3=k=03o3L3s3o3sks3Usk

由于 ∂ s 3 ∂ s k \frac{\partial s_3}{\partial s_k} sks3也需要链式法则,即 ∂ s 3 ∂ s 1 = ∂ s 3 ∂ s 2 ∂ s 2 ∂ s 1 \frac{\partial s_3}{\partial s_1}=\frac{\partial s_3}{\partial s_2}\frac{\partial s_2}{\partial s_1} s1s3=s2s3s1s2。因此公式可以进一步修改为:

∂ L 3 ∂ U = ∑ k = 1 3 ∂ L 3 ∂ o 3 ∂ o 3 ∂ s 3 ∂ s 3 ∂ s k ∂ s k ∂ U = ∑ k = 1 3 ∂ L 3 ∂ o 3 ∂ o 3 ∂ s 3 ( ∏ j = k + 1 3 ∂ s j ∂ s j − 1 ) ∂ s k ∂ U 6 ◯ \frac{\partial L_3}{\partial U}=\sum_{k=1}^3\frac{\partial L_3}{\partial o_3}\frac{\partial o_3}{\partial s_3}\frac{\partial s_3}{\partial s_k}\frac{\partial s_k}{\partial U}=\sum_{k=1}^3\frac{\partial L_3}{\partial o_3}\frac{\partial o_3}{\partial s_3}(\prod_{j=k+1}^3\frac{\partial s_j}{\partial s_{j-1}})\frac{\partial s_k}{\partial U}\textcircled{6} UL3=k=13o3L3s3o3sks3Usk=k=13o3L3s3o3(j=k+13sj1sj)Usk6

同理,对公式④也可以写为:
∂ L 3 ∂ W = ∑ k = 1 3 ∂ L 3 ∂ o 3 ∂ o 3 ∂ s 3 ( ∏ j = k + 1 3 ∂ s j ∂ s j − 1 ) ∂ s k ∂ W 7 ◯ \frac{\partial L_3}{\partial W}=\sum_{k=1}^3\frac{\partial L_3}{\partial o_3}\frac{\partial o_3}{\partial s_3}(\prod_{j=k+1}^3\frac{\partial s_j}{\partial s_{j-1}})\frac{\partial s_k}{\partial W}\textcircled{7} WL3=k=13o3L3s3o3(j=k+13sj1sj)Wsk7

观察③式,对与V的偏导不存在依赖关系。

观察④和⑤式,对W和U求偏导的时候,存在长期依赖关系。原因是前向传播的时候 s t s_t st会随着时间向前传播,而 s t s_t st是W、U的函数。

假设激活函数为tanh,将⑥⑦中累乘部分取出来:
∏ j = k + 1 3 ∂ s j ∂ s j − 1 = ∏ j = k + 1 3 t a n h ′ W \prod_{j=k+1}^3\frac{\partial s_j}{\partial s_{j-1}}=\prod_{j=k+1}^3tanh^{'}W j=k+13sj1sj=j=k+13tanhW
例如: s 3 = f ( U x 3 + W s 2 ) s_3=f(Ux_3+Ws_2) s3=f(Ux3+Ws2) ∂ s 3 ∂ s 2 = t a n h ′ ( U ) W \frac{\partial s3}{\partial s_{2}}=tanh'(U) W s2s3=tanh(U)W
在这里插入图片描述

由上图可知,tanh的梯度最大为1,通常情况下会小于1,因此当t很大的时候,例如t=100时,⑥⑦中的累乘部分 ∏ j = k + 1 100 t a n h ′ W \prod_{j=k+1}^{100}tanh^{^{\prime}}W j=k+1100tanhW将趋于0,因此t=100时对于W和U的梯度将趋于0,导致梯度消失。

分析完tanh,再来分析一下W,如果W中的值太大,那么产生问题就是梯度爆炸


2️⃣ 总结

  • RNN存在梯度消失的原因是:隐藏层的输出 s t s_t st会向前传播,这样导致在反向传播求梯度时存在一个累乘项,这个累乘项由激活函数的梯度参数W组成,如果我们采用tanh作为激活函数,其梯度小于1,时间步越多,累乘项越趋近于0,导致梯度消失。
  • RNN存在梯度爆炸的原因:参数W如果过大,则会导致累乘项逐渐变大,导致梯度爆炸

3️⃣ 参考

RNN梯度消失与梯度爆炸的原因 - Hideonbush的文章 - 知乎


相关文章:

为什么RNN(循环神经网络)存在梯度消失和梯度爆炸?

1️⃣ 原理分析 RNN前向传播的公式为: x t x_t xt​是t时刻的输入 s t s_t st​是t时刻的记忆, s t f ( U ⋅ x t W ⋅ s t − 1 ) s_tf(U\cdot x_tW\cdot s_{t-1}) st​f(U⋅xt​W⋅st−1​),f表示激活函数, s t − 1 s_{t-1} …...

【数据库】数据库迁移的注意事项有哪些?

数据库迁移是一个复杂且关键的过程,需要谨慎处理以确保数据的完整性和应用程序的正常运行。以下是一些数据库迁移时需要注意的事项: 1. 充分的前期准备 1.1 评估迁移需求 明确目标:确定迁移的具体目标,例如添加新字段、修改现…...

MQTT协议解析 : 物联网领域的最佳选择

1. MQTT协议概述 1.1 MQTT协议是什么 MQTT : Message Queuing Telemetry Transport 模式 : 发布 / 订阅主题优点 : 代码量小、低带宽、实时可靠应用 : 物联网、小型设备、移动应用MQTT 常用端口 : 1883 MQTT是一个网络协议,和HTTP类似,因为轻量简单&…...

pycharm中from[本地包]import文件/模块出现问题(最最最全方法!)

1.通过PYTHONPATH的方法在此处将路径添加上,能够让IDE访问得到。 2.通过选中目标文件所在的文件的文件夹单击右键,如下图所示可以看到下方的mark directory as选项中存在 存在excluded,选择此项可解决问题,如果仍有问题可以尝试其…...

MongoDB在现代Web开发中的应用

💓 博客主页:瑕疵的CSDN主页 📝 Gitee主页:瑕疵的gitee主页 ⏩ 文章专栏:《热点资讯》 MongoDB在现代Web开发中的应用 MongoDB在现代Web开发中的应用 MongoDB在现代Web开发中的应用 引言 MongoDB 概述 定义与原理 发展…...

Python Bokeh 数据可视化教程

Python Bokeh 数据可视化教程 引言 在数据科学和分析的过程中,数据可视化是一个至关重要的环节。它不仅能帮助我们更好地理解数据,还能在报告和展示中提升数据的可读性和吸引力。Python 作为数据科学的主要工具之一,提供了多种数据可视化库…...

(一)<江科大STM32>——软件环境搭建+新建工程步骤

一、软件环境搭建 (1)安装 Keil5 MDK 文件路径:江科大stm32入门教程资料/Keil5 MDK/MDK524a.EXE,安装即可,路径不能有中文。 (2)安装器件支持包 文件路径:江科大stm32入门教程资料…...

内存大小的单位转换

计算机中内存大小的单位转换通常是按照以下规则进行的: 基本单位 1 字节 (Byte) 8 位 (bit) 常见的内存单位及转换关系 1 字节 (Byte) 8 位 (bit)1 千字节 (KB) 1,024 字节 (B)1 兆字节 (MB) 1,024 千字节 (KB) 1,024 * 1,024 字节 (B)1 吉字节 (GB) 1,02…...

如何在 Spring MVC 中使用 `@PostMapping`? 如何在 Spring MVC 中使用 `@PutMapping`?

PostMapping 和 PutMapping 是 Spring MVC 中用于处理 HTTP POST 和 PUT 请求的注解。它们分别对应 HTTP 协议中的 POST 和 PUT 方法,通常用于创建和更新资源。下面详细解释如何在 Spring MVC 中使用这两个注解。 1. 使用 PostMapping PostMapping 注解用于处理 H…...

AIGC Agent(智能体)应用开发高级工程师实战培训 —— 线上8周系统教学课程学习路线图

🎯 课程目标 系统掌握AIGC核心技术:学员将通过项目驱动学习,从文本生成、图像创意到智能体开发,全面进阶AIGC技术,探索其在营销、教育、数据处理、知识管理等领域的实际应用。构建AIGC智能体服务体系:学成…...

GDSC、CTRP数据库学习

GDSC 写在前面下载数据疑问1.GDSC、CTRP数据里有TCGA配套的数据?数据类型?CTRP原始数据如何处理 写在前面 开此贴做GDSC的数据分析记录 下载数据 GDSC官网:http://www.cancerrxgene.org/ 由于在官网下载数据过于麻烦,于是我使用…...

【嵌入式】ESP32开发(一)ESP-IDF概述

文章目录 1 前言2 IDF环境配置3 在VS Code中使用IDF3.1 使用ESP-IDF例程3.2 底部按钮的作用【重要!】3.3 高级用法4 ESP-IDF框架分析5 从零开始创建一个项目5.1 组件(component)6 主要参考资料7 遇到的一些问题与解决办法8 对于ESP-IDF开发的一些感受1 前言 对于ESP32的开发…...

最新6.7分非肿瘤纯生信,使用机器学习筛选慢阻肺中的关键基因。机器学习在非肿瘤生信文章中正火,可重复!

关于非肿瘤生信,我们也解读过很多,主要有以下类型 1 单个疾病WGCNAPPI分析筛选hub基因。 2 单个疾病结合免疫浸润,铁死亡,自噬等基因集,机器学习算法等。 3 两种相关疾病联合分析,包括非肿瘤结合非肿瘤&…...

vue 提交表单抹除字段为空的数据

使用背景 在配合后端post请求接口的时候 仅需要将有值的字段传入接口中 关键代码 cleanDataObj(obj) {Object.keys(obj).forEach((key) > {if (obj[key] ) {delete obj[key]}})},demo如下 export default {data() {return {demoObject:{name:小花,sex:,hobb…...

web实验3:虚拟主机基于不同端口、目录、IP、域名访问不同页面

创建配置文件: 创建那几个目录及文件,并且写内容: 为网卡ens160添加一个 IPv4 地址192.168.234.199/24: 再重新激活一下网卡ens160: 重启服务: 关闭防火墙、改宽松模式: 查看nginx端口监听情况:…...

英伟达Isaac Manipulator产品体验

相关配置 Isaac Manipulator3.1.0Isaac Sim4.2.0Ubuntu20.04GPURTX 4090 LaptopCPUI9 13900HXMem64GB 过程记录与反馈 GPU加速效果 请描述您在使用Isaac Manipulator时,调用cuMotion加速库来进行机器人运动规划和轨迹优化等任务的步骤和过程,并记录任…...

网安加·百家讲坛 | 仝辉:金融机构鸿蒙应用安全合规建设方案

作者简介:仝辉,北京娜迦信息科技发展有限公司攻防安全负责人,深耕移动应用安全领域十余年,获得过CISP、CISSP、OSCP、PMP、CCRC-CIASW等相关证书,参与多项移动应用安全标准起草,参与华为、平安集团、中国移…...

PHP Session

PHP Session PHP Session 是一种在 PHP 中用于跟踪用户会话的技术。会话允许在用户浏览网站时存储和访问用户信息。本文将详细介绍 PHP Session 的工作原理、如何创建和销毁会话、会话的安全性和最佳实践。 什么是 PHP Session? 在 Web 开发中,HTTP 是一种无状态的协议,这…...

泷羽sec学习打卡-Linux基础2

声明 学习视频来自B站UP主 泷羽sec,如涉及侵权马上删除文章 笔记的只是方便各位师傅学习知识,以下网站只涉及学习内容,其他的都与本人无关,切莫逾越法律红线,否则后果自负 关于Linux的那些事儿-Base2 一、Linux-Base2linux有哪些目录呢?不同目录下有哪些具体的文件呢…...

# 【STM32F1】——无线收发模块RF200与串口通信

【STM32F1】——无线收发模块RF200与串口通信 一、简介 本篇主要对调试无线收发模块RF200的过程进行总结,实现了以下功能。 串口普通收发:使用STM32F103C8T6的USART2串口接收中断,实现两个无线收发模块RF200间的通信。二、RF200介绍 电压:3.4-5.5V工作频率:418~455MHz发…...

使用docker在3台服务器上搭建基于redis 6.x的一主两从三台均是哨兵模式

一、环境及版本说明 如果服务器已经安装了docker,则忽略此步骤,如果没有安装,则可以按照一下方式安装: 1. 在线安装(有互联网环境): 请看我这篇文章 传送阵>> 点我查看 2. 离线安装(内网环境):请看我这篇文章 传送阵>> 点我查看 说明:假设每台服务器已…...

《从零掌握MIPI CSI-2: 协议精解与FPGA摄像头开发实战》-- CSI-2 协议详细解析 (一)

CSI-2 协议详细解析 (一) 1. CSI-2层定义(CSI-2 Layer Definitions) 分层结构 :CSI-2协议分为6层: 物理层(PHY Layer) : 定义电气特性、时钟机制和传输介质(导线&#…...

基于当前项目通过npm包形式暴露公共组件

1.package.sjon文件配置 其中xh-flowable就是暴露出去的npm包名 2.创建tpyes文件夹,并新增内容 3.创建package文件夹...

页面渲染流程与性能优化

页面渲染流程与性能优化详解(完整版) 一、现代浏览器渲染流程(详细说明) 1. 构建DOM树 浏览器接收到HTML文档后,会逐步解析并构建DOM(Document Object Model)树。具体过程如下: (…...

EtherNet/IP转DeviceNet协议网关详解

一,设备主要功能 疆鸿智能JH-DVN-EIP本产品是自主研发的一款EtherNet/IP从站功能的通讯网关。该产品主要功能是连接DeviceNet总线和EtherNet/IP网络,本网关连接到EtherNet/IP总线中做为从站使用,连接到DeviceNet总线中做为从站使用。 在自动…...

【python异步多线程】异步多线程爬虫代码示例

claude生成的python多线程、异步代码示例,模拟20个网页的爬取,每个网页假设要0.5-2秒完成。 代码 Python多线程爬虫教程 核心概念 多线程:允许程序同时执行多个任务,提高IO密集型任务(如网络请求)的效率…...

Spring是如何解决Bean的循环依赖:三级缓存机制

1、什么是 Bean 的循环依赖 在 Spring框架中,Bean 的循环依赖是指多个 Bean 之间‌互相持有对方引用‌,形成闭环依赖关系的现象。 多个 Bean 的依赖关系构成环形链路,例如: 双向依赖:Bean A 依赖 Bean B,同时 Bean B 也依赖 Bean A(A↔B)。链条循环: Bean A → Bean…...

08. C#入门系列【类的基本概念】:开启编程世界的奇妙冒险

C#入门系列【类的基本概念】:开启编程世界的奇妙冒险 嘿,各位编程小白探险家!欢迎来到 C# 的奇幻大陆!今天咱们要深入探索这片大陆上至关重要的 “建筑”—— 类!别害怕,跟着我,保准让你轻松搞…...

消息队列系统设计与实践全解析

文章目录 🚀 消息队列系统设计与实践全解析🔍 一、消息队列选型1.1 业务场景匹配矩阵1.2 吞吐量/延迟/可靠性权衡💡 权衡决策框架 1.3 运维复杂度评估🔧 运维成本降低策略 🏗️ 二、典型架构设计2.1 分布式事务最终一致…...

32单片机——基本定时器

STM32F103有众多的定时器,其中包括2个基本定时器(TIM6和TIM7)、4个通用定时器(TIM2~TIM5)、2个高级控制定时器(TIM1和TIM8),这些定时器彼此完全独立,不共享任何资源 1、定…...