当前位置: 首页 > news >正文

【数学 函数空间】拉普拉斯变换解微分方程步骤

拉普拉斯变换解微分方程

  • 拉普拉斯变换解微分方程的一般步骤如下:
    • 写出微分方程。
    • 对微分方程两边应用拉普拉斯正变换
    • 求解变换后的代数方程,得到 Y ( s ) Y(s) Y(s)
    • 如果需要,进行部分分式分解。
    • Y ( s ) Y(s) Y(s)进行拉普拉斯逆变换,得到 y ( t ) y(t) y(t)
    • 考虑初始条件,得到完整的时域解。

1. 写出微分方程

  • 假设有一个关于函数 y ( t ) y(t) y(t)的微分方程:

d n y ( t ) d t n + a n − 1 d n − 1 y ( t ) d t n − 1 + ⋯ + a 1 d y ( t ) d t + a 0 y ( t ) = f ( t ) \frac{d^n y(t)}{dt^n} + a_{n-1} \frac{d^{n-1} y(t)}{dt^{n-1}} + \dots + a_1 \frac{d y(t)}{dt} + a_0 y(t) = f(t) dtndny(t)+an1dtn1dn1y(t)++a1dtdy(t)+a0y(t)=f(t)

其中, f ( t ) f(t) f(t) 是已知的外部输入函数,( y(t) ) 是待求解的函数,( a_0, a_1, \dots, a_{n-1} ) 是常数。

2. 对微分方程两边应用拉普拉斯变换

拉普拉斯变换的定义是:

L { f ( t ) } = F ( s ) = ∫ 0 ∞ f ( t ) e − s t d t \mathcal{L} \{ f(t) \} = F(s) = \int_0^\infty f(t) e^{-st} dt L{f(t)}=F(s)=0f(t)estdt

通过对微分方程两边应用拉普拉斯变换,将微分方程中的每一项都转换为代数方程中的相应项。利用拉普拉斯变换的常用公式:

  • L { d n y ( t ) d t n } = s n Y ( s ) − s n − 1 y ( 0 ) − s n − 2 d y ( 0 ) d t − ⋯ − y ( n − 1 ) ( 0 ) \mathcal{L} \left\{ \frac{d^n y(t)}{dt^n} \right\} = s^n Y(s) - s^{n-1} y(0) - s^{n-2} \frac{dy(0)}{dt} - \dots - y^{(n-1)}(0) L{dtndny(t)}=snY(s)sn1y(0)sn2dtdy(0)y(n1)(0)

对于每个导数项,拉普拉斯变换会产生相应的 s s s-域表达式。 Y ( s ) Y(s) Y(s) y ( t ) y(t) y(t) 的拉普拉斯变换, y ( 0 ) , y ′ ( 0 ) , … y(0), y'(0), \dots y(0),y(0),是初始条件。

  • 假设有一个二阶微分方程:

d 2 y ( t ) d t 2 + 3 d y ( t ) d t + 2 y ( t ) = f ( t ) \frac{d^2 y(t)}{dt^2} + 3\frac{d y(t)}{dt} + 2 y(t) = f(t) dt2d2y(t)+3dtdy(t)+2y(t)=f(t)

应用拉普拉斯变换后:

s 2 Y ( s ) − s y ( 0 ) − y ′ ( 0 ) + 3 ( s Y ( s ) − y ( 0 ) ) + 2 Y ( s ) = F ( s ) s^2 Y(s) - s y(0) - y'(0) + 3(s Y(s) - y(0)) + 2 Y(s) = F(s) s2Y(s)sy(0)y(0)+3(sY(s)y(0))+2Y(s)=F(s)

3. 代数方程求解

将变换后的方程整理成 Y ( s ) Y(s) Y(s) 的代数方程,通常是一个关于 Y ( s ) Y(s) Y(s) 的代数方程:

Y ( s ) ( s 2 + 3 s + 2 ) − s y ( 0 ) − y ′ ( 0 ) − 3 y ( 0 ) = F ( s ) Y(s) \left( s^2 + 3s + 2 \right) - s y(0) - y'(0) - 3y(0) = F(s) Y(s)(s2+3s+2)sy(0)y(0)3y(0)=F(s)

然后解这个代数方程,求出 Y ( s ) Y(s) Y(s) 的表达式。对于上面的例子,解出 Y ( s ) Y(s) Y(s)

Y ( s ) = F ( s ) + s y ( 0 ) + y ′ ( 0 ) + 3 y ( 0 ) s 2 + 3 s + 2 Y(s) = \frac{F(s) + s y(0) + y'(0) + 3 y(0)}{s^2 + 3s + 2} Y(s)=s2+3s+2F(s)+sy(0)+y(0)+3y(0)

4. 应用部分分式分解(如有必要)

如果得到的 Y ( s ) Y(s) Y(s) 是一个有理函数(分子和分母都是多项式),通常需要使用部分分式分解来将 Y ( s ) Y(s) Y(s) 分解成简单的分式。这对于拉普拉斯反变换非常重要,因为简单的分式更容易找到其逆变换。

  • 例如,如果得到:

Y ( s ) = 1 ( s + 1 ) ( s + 2 ) Y(s) = \frac{1}{(s+1)(s+2)} Y(s)=(s+1)(s+2)1

  • 可以进行部分分式分解:

1 ( s + 1 ) ( s + 2 ) = A s + 1 + B s + 2 \frac{1}{(s+1)(s+2)} = \frac{A}{s+1} + \frac{B}{s+2} (s+1)(s+2)1=s+1A+s+2B

然后解出 A A A B B B,得到 Y ( s ) Y(s) Y(s) 的分式形式。

5. 进行拉普拉斯逆变换

一旦得到 Y ( s ) Y(s) Y(s),就可以通过查找标准的拉普拉斯变换对照表或使用逆变换公式,将 Y ( s ) Y(s) Y(s) 转换回时域函数 y ( t ) y(t) y(t)

  • 例如,如果:

Y ( s ) = 1 s + 1 Y(s) = \frac{1}{s+1} Y(s)=s+11

  • 可以使用拉普拉斯变换对照表得出逆变换:

y ( t ) = e − t y(t) = e^{-t} y(t)=et

  • 以下是拉普拉斯变换常见函数的对照表:
函数 f ( t ) f(t) f(t)拉普拉斯变换 L { f ( t ) } \mathcal{L}\{f(t)\} L{f(t)}
1 1 1 1 s \frac{1}{s} s1
t t t 1 s 2 \frac{1}{s^2} s21
t n t^n tn (n为整数) n ! s n + 1 \frac{n!}{s^{n+1}} sn+1n!
e a t e^{at} eat 1 s − a \frac{1}{s - a} sa1
sin ⁡ ( a t ) \sin(at) sin(at) a s 2 + a 2 \frac{a}{s^2 + a^2} s2+a2a
cos ⁡ ( a t ) \cos(at) cos(at) s s 2 + a 2 \frac{s}{s^2 + a^2} s2+a2s
e a t sin ⁡ ( b t ) e^{at} \sin(bt) eatsin(bt) b ( s − a ) 2 + b 2 \frac{b}{(s-a)^2 + b^2} (sa)2+b2b
e a t cos ⁡ ( b t ) e^{at} \cos(bt) eatcos(bt) s − a ( s − a ) 2 + b 2 \frac{s-a}{(s-a)^2 + b^2} (sa)2+b2sa
δ ( t ) \delta(t) δ(t) 1 1 1
u ( t ) u(t) u(t) (单位阶跃函数) 1 s \frac{1}{s} s1
u ( t − a ) u(t-a) u(ta) (延迟单位阶跃函数) e − a s s \frac{e^{-as}}{s} seas
1 t \frac{1}{t} t1 ln ⁡ ( s ) \ln(s) ln(s)
e a t t n e^{at} t^n eattn n ! ( s − a ) n + 1 \frac{n!}{(s-a)^{n+1}} (sa)n+1n!

6. 考虑初始条件

在进行拉普拉斯逆变换时,确保考虑初始条件。初始条件(如 y ( 0 ) y(0) y(0), y ′ ( 0 ) y'(0) y(0) 等)在解的过程中通过拉普拉斯变换的公式已经引入,因此最终解中将包含这些初始条件对时域解的影响。

7. 最终解

最后,得到微分方程的解,通常是:

y ( t ) = L − 1 { Y ( s ) } y(t) = \mathcal{L}^{-1} \left\{ Y(s) \right\} y(t)=L1{Y(s)}

相关文章:

【数学 函数空间】拉普拉斯变换解微分方程步骤

拉普拉斯变换解微分方程 拉普拉斯变换解微分方程的一般步骤如下: 写出微分方程。对微分方程两边应用拉普拉斯正变换。求解变换后的代数方程,得到 Y ( s ) Y(s) Y(s)。如果需要,进行部分分式分解。对 Y ( s ) Y(s) Y(s)进行拉普拉斯逆变换&…...

vue3: toRef, reactive, toRefs, toRaw

vue3&#xff1a; toRef, reactive, toRefs, toRaw <template><div>{{ man }}</div><hr><!-- <div>{{ name }}--{{ age }}--{{ like }}</div> --><div><button click"change">修改</button></div&g…...

Unity读取Json

参考 Unity读取Json的几种方法_unity读取json文件-CSDN博客...

基于STM32的智能语音识别饮水机系统设计

功能描述 1、给饮水机设定称呼&#xff0c;喊出称呼&#xff0c;饮水机回答&#xff1a;我在 2、语音进行加热功能&#xff0c;说&#xff1a;请加热&#xff0c;加热片运行 3、饮水机水位检测&#xff0c;低于阈值播报“水量少&#xff0c;请换水” 4、检测饮水机水温&#xf…...

c++的几种构造函数

c的几种构造函数 构造函数拷贝构造函数转换构造函数移动构造函数 析构函数 构造函数 C中的构造函数可以分为5类&#xff1a;默认构造函数、普通构造函数、拷贝构造函数、转换构造函数、移动构造函数。 好像还有委托构造 默认构造和普通构造和java基本一样 详细 拷贝构造函…...

FRP 实现内网穿透

如何通过 FRP 实现内网穿透&#xff1a;群晖 NAS 的 Gitea 和 GitLab 访问配置指南 在自建服务的过程中&#xff0c;经常会遇到内网访问受限的问题。本文将介绍如何利用 FRP&#xff08;Fast Reverse Proxy&#xff09;来实现内网穿透&#xff0c;以便在外网访问群晖 NAS 上的…...

数据结构笔记(其八)--一般树的存储及其遍历

1.知识总览 一般的树会有多个孩子&#xff0c;所以存储结构也会与二叉树略有不同。 一般树的遍历。 2.双亲表示法 双亲表示法&#xff0c;也是父亲表示法&#xff0c;即每个节点中都存储了其父节点的地址信息。 特性&#xff1a;可以轻易地找到父节点&#xff0c;但寻找孩子节…...

在spring boot工程中使用Filter时,@WebFilter 注解不生效的问题分析和解决方案

1. 问题描述 首先编写一个Filter类并通过Component放入spring容器中&#xff0c;通过实现jakarta.servlet中提供的Filter接口完成过滤器的创建&#xff0c;代码如下。 import jakarta.servlet.*; import jakarta.servlet.annotation.WebFilter; import org.springframework.st…...

浅谈“通感一体”

文章目录 5G_Advanced的关键技术通感一体的介绍通感一体应用通感一体面临的挑战 5G_Advanced的关键技术 2024年6月18日16点30分&#xff0c;在上海举行的3GPP RAN第104次会议上&#xff0c;R18标准正式冻结&#xff0c;标志着5G技术的又一重要里程碑。值得注意的是&#xff0c…...

【Linux】监控系统Zabbix的安装与配置

文章目录 一、前期准备1、安装LAMP2、配置SELinux与防火墙3、测试Apache4、配置数据库5、创建zabbix数据库及应用 二、server端安装配置1、软件包安装2、配置数据库3、zabbix访问测试4、配置web界面 三、Agent端安装配置1、安装zabbix-agent2、配置3、启动zabbix-agent4、配置防…...

Springboot定时任务

Component EnableScheduling public class SpringBootTestJob {Scheduled(cron "0/5 * * * * ?")public void testScheduled(){System.out.println("SpringBootTestJob test");} }这段代码使用了 Spring Boot 自带的定时任务机制。解释如下&#xff1a; …...

node.js知识点总结

1、Node.js Node. js是一个基于 Chrome v8引擎的服务器端 JavaScript运行环境&#xff1b;Node. js是一个事件驱动、非阻塞式I/O的模型&#xff0c;轻量而又高效&#xff1b;Node. js的包管理器npm是全球最大的开源库生态系统。 2、数据处理中的buffer&#xff1a; 具体…...

Kotlin中泛型的协变

interface Shapeclass Circle : Shapefun main() {val shapes1: List<Shape> listOf<Circle>()val shapes2: MutableList<Shape> mutableListOf<Circle>() }如上代码&#xff0c;第一行赋值语句是OK的&#xff0c;第二行赋值语句在编辑器上直接就报错…...

第三百二十五节 Java线程教程 - Java Fork/Join框架

Java线程教程 - Java Fork/Join框架 fork/join框架通过利用机器上的多个处理器或多个内核来解决问题。 该框架有助于解决涉及并行性的问题。 fork/join框架创建一个线程池来执行子任务。 当线程在子任务上等待完成时&#xff0c;框架使用该线程来执行其他线程的其他未决子任…...

网络游戏安全现状及相关应对方案

中国网络游戏历经十余年的飞速发展&#xff0c;取得了显著成就&#xff0c;但与此同时&#xff0c;也陷入了诸多安全问题的泥沼。 一、中国网络游戏发展中的安全困境 &#xff08;一&#xff09;灰色产业链滋生 外挂、私服、盗号、打金工作室以及网络信息诈骗等灰色产业链在…...

uniapp h5地址前端重定向跳转

简单说下功能&#xff0c;就是在地址输入http://localhost:8080/home 会自行跳转到http://localhost:8080/pages/home/index&#xff0c;如果有带参数的话也会携带上去。 ps&#xff1a;只能在h5中使用 首先需要用到query-string 安装query-string npm install query-string…...

uniapp隐藏自带的tabBar

uniapp隐藏自带的tabBar 场景: 微信小程序在使用自定义tabBar组件时, 隐藏uniapp自带的tabBar <template> <!-- index页面 --> </template> <script setup> import { onShow } from /utils/wxUtils onShow(() > {uni.hideTabBar() // 隐藏自带的tab…...

使用--log-file保存pytest的运行日志

前面使用了tee和重定向来保存pytest的运行日志&#xff0c;这次使用--log-file&#xff0c;因为它可以配置日志的级别、格式和每行日志的生成时间。 pytest -q -s -ra --count100 test_open_stream.py --alluredir./report/CXL --log-filepytest_log.txt 【pytest.ini】 使用…...

WebAPI性能监控-MiniProfiler与Swagger集成

Net8_WebAPI性能监控-MiniProfiler与Swagger集成 要在.NET Core项目中集成MiniProfiler和Swagger&#xff0c;可以按照以下步骤操作&#xff1a; 安装NuGet包&#xff1a; 安装MiniProfiler.AspNetCore.Mvc包以集成MiniProfiler。安装MiniProfiler.EntityFrameworkCore包以监…...

视频会议接入GB28181视频指挥调度,语音对讲方案

传统的视频会议指挥调度系统目前主流的互联网会议大部分都是私有协议&#xff0c;功能都很独立。目前主流的视频监控国标都最GB平台&#xff0c;新的需求要求融合平台要接入监控等设备&#xff0c;并能实现观看监控接入会议&#xff0c;实时语音设备指挥现场工作人员办公实施。…...

CVPR 2025 MIMO: 支持视觉指代和像素grounding 的医学视觉语言模型

CVPR 2025 | MIMO&#xff1a;支持视觉指代和像素对齐的医学视觉语言模型 论文信息 标题&#xff1a;MIMO: A medical vision language model with visual referring multimodal input and pixel grounding multimodal output作者&#xff1a;Yanyuan Chen, Dexuan Xu, Yu Hu…...

安卓基础(aar)

重新设置java21的环境&#xff0c;临时设置 $env:JAVA_HOME "D:\Android Studio\jbr" 查看当前环境变量 JAVA_HOME 的值 echo $env:JAVA_HOME 构建ARR文件 ./gradlew :private-lib:assembleRelease 目录是这样的&#xff1a; MyApp/ ├── app/ …...

服务器--宝塔命令

一、宝塔面板安装命令 ⚠️ 必须使用 root 用户 或 sudo 权限执行&#xff01; sudo su - 1. CentOS 系统&#xff1a; yum install -y wget && wget -O install.sh http://download.bt.cn/install/install_6.0.sh && sh install.sh2. Ubuntu / Debian 系统…...

云原生安全实战:API网关Kong的鉴权与限流详解

&#x1f525;「炎码工坊」技术弹药已装填&#xff01; 点击关注 → 解锁工业级干货【工具实测|项目避坑|源码燃烧指南】 一、基础概念 1. API网关&#xff08;API Gateway&#xff09; API网关是微服务架构中的核心组件&#xff0c;负责统一管理所有API的流量入口。它像一座…...

MinIO Docker 部署:仅开放一个端口

MinIO Docker 部署:仅开放一个端口 在实际的服务器部署中,出于安全和管理的考虑,我们可能只能开放一个端口。MinIO 是一个高性能的对象存储服务,支持 Docker 部署,但默认情况下它需要两个端口:一个是 API 端口(用于存储和访问数据),另一个是控制台端口(用于管理界面…...

深度剖析 DeepSeek 开源模型部署与应用:策略、权衡与未来走向

在人工智能技术呈指数级发展的当下&#xff0c;大模型已然成为推动各行业变革的核心驱动力。DeepSeek 开源模型以其卓越的性能和灵活的开源特性&#xff0c;吸引了众多企业与开发者的目光。如何高效且合理地部署与运用 DeepSeek 模型&#xff0c;成为释放其巨大潜力的关键所在&…...

第八部分:阶段项目 6:构建 React 前端应用

现在&#xff0c;是时候将你学到的 React 基础知识付诸实践&#xff0c;构建一个简单的前端应用来模拟与后端 API 的交互了。在这个阶段&#xff0c;你可以先使用模拟数据&#xff0c;或者如果你的后端 API&#xff08;阶段项目 5&#xff09;已经搭建好&#xff0c;可以直接连…...

高防服务器价格高原因分析

高防服务器的价格较高&#xff0c;主要是由于其特殊的防御机制、硬件配置、运营维护等多方面的综合成本。以下从技术、资源和服务三个维度详细解析高防服务器昂贵的原因&#xff1a; 一、硬件与技术投入 大带宽需求 DDoS攻击通过占用大量带宽资源瘫痪目标服务器&#xff0c;因此…...

Java 与 MySQL 性能优化:MySQL 慢 SQL 诊断与分析方法详解

文章目录 一、开启慢查询日志&#xff0c;定位耗时SQL1.1 查看慢查询日志是否开启1.2 临时开启慢查询日志1.3 永久开启慢查询日志1.4 分析慢查询日志 二、使用EXPLAIN分析SQL执行计划2.1 EXPLAIN的基本使用2.2 EXPLAIN分析案例2.3 根据EXPLAIN结果优化SQL 三、使用SHOW PROFILE…...

CSS3相关知识点

CSS3相关知识点 CSS3私有前缀私有前缀私有前缀存在的意义常见浏览器的私有前缀 CSS3基本语法CSS3 新增长度单位CSS3 新增颜色设置方式CSS3 新增选择器CSS3 新增盒模型相关属性box-sizing 怪异盒模型resize调整盒子大小box-shadow 盒子阴影opacity 不透明度 CSS3 新增背景属性ba…...