概率论公式整理
1 概率
- 古典概型和几何概型
- 古典概型(有限等可能)
- 几何概型(无限等可能)
- 条件概率
P ( A ∣ B ) = P ( A B ) P ( B ) P(A|B) = \frac{P(AB)}{P(B)} P(A∣B)=P(B)P(AB)
- 全概率公式
P ( B ) = ∑ i = 1 n P ( A i ) P ( B ∣ A i ) P(B) = \sum \limits_{i = 1}^n P(A_i)P(B|A_i) P(B)=i=1∑nP(Ai)P(B∣Ai)
- 贝叶斯公式:根据先验概率计算后验概率
P ( H ∣ E ) = P ( H ) P ( E ∣ H ) P ( E ) P ( B i ∣ A ) = P ( B i ) P ( A ∣ B i ) ∑ i P ( B i ) P ( A ∣ B i ) P ( H i ∣ E 1 E 2 ⋯ E m ) = P ( E 1 ∣ H i ) P ( E 2 ∣ H i ) ⋯ P ( E m ∣ H i ) P ( H i ) ∑ j = 1 n P ( E 1 ∣ H j ) P ( E 2 ∣ H j ) ⋯ P ( E m ∣ H j ) P ( H j ) P(H|E) = \frac{P(H)P(E|H)}{P(E)} \\ P(B_i | A) = \frac{P(B_i)P(A|B_i)}{\sum_i P(B_i) P(A|B_i)} \\ P(H_i | E_1E_2 \cdots E_m) = \frac{P(E_1|H_i)P(E_2|H_i) \cdots P(E_m|H_i)P(H_i)}{\sum \limits_{j = 1}^n P(E_1|H_j)P(E_2|H_j) \cdots P(E_m|H_j)P(H_j)} P(H∣E)=P(E)P(H)P(E∣H)P(Bi∣A)=∑iP(Bi)P(A∣Bi)P(Bi)P(A∣Bi)P(Hi∣E1E2⋯Em)=j=1∑nP(E1∣Hj)P(E2∣Hj)⋯P(Em∣Hj)P(Hj)P(E1∣Hi)P(E2∣Hi)⋯P(Em∣Hi)P(Hi)
- 先验概率和后验概率
- 先验概率:事情未发生,根据以往数据分析得到的概率
- 后验概率:事情已发生,这件事情发生的原因是由某个因素引起的概率。 P ( B i ∣ A ) P(B_i|A) P(Bi∣A) 中 B i B_i Bi 为某个因素, A A A 为已经发生的结果
2 离散随机变量及分布
X X X 的概率分布函数:
- 两点分布(01分布) X ∼ B ( 1 , p ) X \thicksim B(1, p) X∼B(1,p)
P ( X = 0 ) = 1 − p P ( X = 1 ) = p p ∈ ( 0 , 1 ) P(X = 0) = 1 - p \\ P(X = 1) = p \\ p \in (0,1) P(X=0)=1−pP(X=1)=pp∈(0,1)
- 二项分布(伯努利分布) X ∼ B ( n , p ) X \thicksim B(n, p) X∼B(n,p)
P ( X = k ) = C n k p k ( 1 − p ) n − k p ∈ ( 0 , 1 ) , k = 0 , 1 , 2 , ⋯ , n P(X = k) = C_n^k p^k (1 - p)^{n - k} \hspace{1em} p \in (0,1), k = 0,1,2,\cdots, n P(X=k)=Cnkpk(1−p)n−kp∈(0,1),k=0,1,2,⋯,n
- 泊松分布 X ∼ P ( λ ) X \thicksim P(\lambda) X∼P(λ)
P ( X = k ) = λ k e − λ k ! λ > 0 , k = 0 , 1 , 2 , ⋯ P(X = k) = \frac{\lambda ^ k e ^{- \lambda}}{k!} \hspace{1em} \lambda \gt 0, k = 0,1,2,\cdots P(X=k)=k!λke−λλ>0,k=0,1,2,⋯
- 几何分布 X ∼ G ( p ) X \thicksim G(p) X∼G(p)
P ( X = k ) = ( 1 − p ) k − 1 p p ∈ ( 0 , 1 ) , k = 1 , 2 , ⋯ P(X = k) = (1 - p) ^ {k - 1} p \hspace{1em} p \in (0, 1), k = 1, 2, \cdots P(X=k)=(1−p)k−1pp∈(0,1),k=1,2,⋯
- 超几何分布 X ∼ h ( n , N , M ) X \thicksim h(n, N, M) X∼h(n,N,M)
N N N个产品, M M M个次品,从中无放回随机抽取 n n n个,不合格数 X X X服从超几何分布
P ( X = k ) = C N − M n − k C M k C N n P(X = k) = \frac{C_{N - M} ^ {n - k}C_M^k}{C_N ^ n} P(X=k)=CNnCN−Mn−kCMk
联合分布函数:二维随机变量 ( X , Y ) (X, Y) (X,Y) 的分布函数。
边缘概率函数:从联合分布函数得到只关于一个变量的概率分布,而不再考虑另一变量的影响,相当于降维操作
条件概率函数:在一个已知变量发生的情况下,考虑另一个变量的概率分布函数
3 连续随机变量及分布
概率密度函数:连续型随机变量 X X X 的分布函数为 F ( x ) F(x) F(x) ,若存在一个非负的函数 f ( x ) f(x) f(x) ,使得对任意 x x x 有:
F ( x ) = ∫ − ∞ x f ( t ) d t F(x) = \int _{-\infin} ^x f(t) dt F(x)=∫−∞xf(t)dt
则称 f ( x ) f(x) f(x) 为 X X X 的概率密度函数
联合概率密度:二维随机变量的概率密度函数
边缘分布函数:二维随机变量关于某一维变量的概率密度分布,化为关于这一维变量的积分函数
- 均匀分布 X ∼ U ( a , b ) X \thicksim U(a, b) X∼U(a,b)
f ( x ) = { 1 b − a , a ≤ x ≤ b 0 , 其他 f(x) = \begin{cases} \frac{1}{b - a}, & a \le x \le b \\ 0, &其他 \end{cases} f(x)={b−a1,0,a≤x≤b其他
- 指数分布 X ∼ E ( λ ) X \thicksim E(\lambda) X∼E(λ)
f ( x ) = { λ e − λ x , x > 0 0 , 其他 f(x) = \begin{cases} \lambda e ^{-\lambda x}, & x \gt 0 \\ 0, &其他 \end{cases} f(x)={λe−λx,0,x>0其他
- 正态分布(高斯分布) X ∼ N ( μ , σ 2 ) X \thicksim N(\mu, \sigma ^ 2) X∼N(μ,σ2)
f ( x ) = 1 2 π σ e − ( x − μ ) 2 2 σ 2 f(x) = \frac{1}{\sqrt{2 \pi} \sigma} \huge{e} ^ {\large{- \frac{(x - \mu) ^ 2}{2 \sigma ^ 2}}} f(x)=2πσ1e−2σ2(x−μ)2
标准正态分布 X ∼ N ( 0 , 1 ) X \thicksim N(0, 1) X∼N(0,1)
4 随机变量数字特征
- 数学期望
离散分布的数学期望:
-
两点分布 p p p
-
二项分布 n p np np
-
泊松分布 λ \lambda λ
-
几何分布 1 p \frac{1}{p} p1
连续分布的数学期望:
E ( X ) = ∫ − ∞ + ∞ x f ( x ) d x E(X) = \int _{-\infin}^{+ \infin} xf(x) dx E(X)=∫−∞+∞xf(x)dx
- 均匀分布 a + b 2 \frac{a + b}{2} 2a+b
- 指数分布 1 λ \frac{1}{\lambda} λ1
- 正态分布 μ \mu μ
- 方差
D ( X ) = E [ ( X − E ( X ) ) 2 ] = E ( X 2 ) − E 2 ( X ) D(X) = E[(X - E(X))^2] = E(X^2) - E^2(X) D(X)=E[(X−E(X))2]=E(X2)−E2(X)
- 协方差
C o v ( X , Y ) = E [ ( X − E [ X ] ) ( Y − E [ Y ] ) ] = E [ X Y ] − E [ X ] E [ Y ] Cov(X, Y) = E[(X - E[X])(Y - E[Y])] = E[XY] - E[X]E[Y] Cov(X,Y)=E[(X−E[X])(Y−E[Y])]=E[XY]−E[X]E[Y]
从数值来看,协方差的数值越大,两个变量同向程度也就越大。反之亦然。
两个集合X和Y的协方差计算公式为:
Cov ( X , Y ) = 1 n ∑ i = 1 n ( x i − x ˉ ) ( y i − y ˉ ) \text{Cov}(X, Y) = \frac{1}{n} \sum_{i=1}^{n} (x_i - \bar{x})(y_i - \bar{y}) Cov(X,Y)=n1i=1∑n(xi−xˉ)(yi−yˉ)
- 相关系数
ρ X Y = C o v ( X , Y ) D ( X ) D ( Y ) \rho_{_{XY}} = \frac{Cov(X, Y)}{\sqrt{D(X)} \sqrt{D(Y)}} ρXY=D(X)D(Y)Cov(X,Y)
相关系数等于0,不相关,相互独立
- 独立、互斥、相关(线性相关)
5 大数定理和中心极限定理
- 大数定理
样本数量很大的时候,样本均值和数学期望充分接近,也就是说当我们大量重复某一相同的实验的时候,其最后的实验结果可能会稳定在某一数值附近。
伯努利大数定律: f n ( A ) f_n(A) fn(A) 为事件 A A A 出现的频率, p p p 是事件A每次实验中发生的概率
l i m n → ∞ P { ∣ f n ( A ) − p ∣ < ε } = 1 \mathop{lim} \limits _{n \rightarrow \infin} P \{ |f_n(A) - p| \lt \varepsilon \} = 1 n→∞limP{∣fn(A)−p∣<ε}=1
还有切比雪夫大数定律,马尔科夫大数定律
- 中心极限定理
大量( n → ∞ n \to \infin n→∞)、独立、同分布的随机变量之和,近似服从于一维正态分布。
随机变量之和的标准化变量为
η = ∑ i = 1 n x i − n μ n σ \eta = \frac{\sum \limits _{i = 1} ^{n} x_i - n \mu}{\sqrt{n} \sigma} η=nσi=1∑nxi−nμ
均值为 μ \mu μ,方差为 σ 2 \sigma^2 σ2的独立同分布的随机变量序列 x 1 , x 2 , ⋯ , x n x_1, x_2, \cdots, x_n x1,x2,⋯,xn,只要 n n n足够大,就有
∑ i = 1 n x i − n μ n σ ∼ 近似 N ( 0 , 1 ) \frac{\sum \limits _{i = 1} ^{n} x_i - n \mu}{\sqrt{n} \sigma} \stackrel{近似}{\thicksim} N(0, 1) nσi=1∑nxi−nμ∼近似N(0,1)
6 参数估计
极大似然估计要求所有采样都是独立同分布的
就是利用已知的样本结果信息,反推最具有可能(最大概率)导致这些样本结果出现的模型参数值!
求最大似然估计量 θ ^ \hat \theta θ^ 步骤:
- 写出似然函数,似然函数越大越好
L = ∏ i = 1 n f ( x i ) L = \prod \limits _{i = 1} ^n f(x_i) L=i=1∏nf(xi)
-
对似然函数取对数,整理
-
求导数,让导数等于0
-
解似然方程
相关文章:

概率论公式整理
1 概率 古典概型和几何概型 古典概型(有限等可能)几何概型(无限等可能) 条件概率 P ( A ∣ B ) P ( A B ) P ( B ) P(A|B) \frac{P(AB)}{P(B)} P(A∣B)P(B)P(AB) 全概率公式 P ( B ) ∑ i 1 n P ( A i ) P ( B ∣ A i ) P…...

【C++】—— stack和queue的模拟实现
前言 stack 和 queue使用起来都非常简单,现在来模拟实现一下,理解其底层的原理。 在实现之前,应该知道,stack 和 queue 都是容器适配器,通过看官网文件也可以看出来;其默认的容器都是dequeÿ…...

管家婆工贸ERP BR039.采购订单关联MRP明细表
最低适用版本: 工贸系列 23.8 插件简要功能说明: 采购订单明细表,支持显示采购订单明细上游请购单明细关联的MRP中对应销售订单明细产成品相关信息更多细节描述见下方详细文档 插件操作视频: 进销存类定制插件--采购订单关联M…...

SwanLab安装教程
SwanLab是一款开源、轻量级的AI实验跟踪工具,提供了一个跟踪、比较、和协作实验的平台,旨在加速AI研发团队100倍的研发效率。 其提供了友好的API和漂亮的界面,结合了超参数跟踪、指标记录、在线协作、实验链接分享、实时消息通知等功能&…...

MySQL EXPLAIN,数据库调优的秘密通道
EXPLAIN 是 MySQL 中一个非常有用的工具,它用于分析 SQL 查询的执行计划。通过 EXPLAIN,你可以获取 MySQL 是如何准备执行你的 SQL 语句的,包括使用的索引、连接类型、扫描的行数等信息。这些信息对于优化查询性能、识别性能瓶颈至关重要。 使…...

利用redis的key失效监听器KeyExpirationEventMessageListener作任务定时提醒功能
某需求: 要求在任务截止日期的前3天时,系统自动给用户发一条消息提醒。 用定时任务的话感觉很不舒服。间隔时间不好弄。不能精准卡到那个点。 由于系统简单,没有使用消息列队,也不能使用延时队列来做。 用Timer的话开销还挺大的&a…...

如何基于Tesseract实现图片的文本识别
在前一篇文章基础上,如何将报告图片中的文本解析出来,最近研究了基于Tesseract的OCR方案,Tesseract OCR是一个开源的OCR引擎,主要结合开源的tesseract和pytesseract,实现了jpg/png等格式图片文本识别,供大家…...

JavaWeb之AJAX
前言 这一节讲JavaWeb之AJAX 1.概述 以前我们在servlet中得到数据,必须通过域给jsp,然后jsp在响应给浏览器 纯html不能获取servlet返回数据 所以我们用jsp 但是现在我们可以同AJAX给返回数据了 我们可以在sevlet中直接通过AJAX返回给浏览器 html中的J…...

算法---解决“汉诺塔”问题
# 初始化步骤计数器 i 1 # 定义移动盘子的函数 def move(n, mfrom, mto): global i # 使用全局变量i来跟踪步骤 print("第%d步:将%d号盘子从%s->%s" % (i, n, mfrom, mto)) # 打印移动步骤 i 1 # 步骤计数器加1 #第一种方法 # 定义汉诺塔问题的递归…...

1-Equity-Transformer:求解NP-Hard Min-Max路由问题的顺序生成算法(AAAI-24)(完)(code)
文章目录 AbstractIntroduction问题表述Methodology多智能体位置编码公平上下文编码训练方案ExperimentsmTSP的性能评估mPDP的性能评估Related WorkConclusionAbstract 最小最大路由问题旨在通过智能体合作完成任务来最小化多个智能体中最长行程的长度。这些问题包括对现实世界…...

linux001.在Oracle VM VirtualBox中ubuntu虚拟系统扩容
1.打开终端切换到virtualBox安装目录 2.输入命令扩容 如上终端中的代码解释: D:\Program Files\Oracle\VirtualBox>.\VBoxManage modifyhd D:\ubuntu18.04\Ubuntu18.04\Ubuntu18.04.vdi --resize 40960如上代码说明:D:\Program Files\Oracle\Virtual…...

RabbitMQ教程:路由(Routing)(四)
文章目录 RabbitMQ教程:路由(Routing)(四)一、引言二、基本概念2.1 路由与绑定2.2 Direct交换机2.3 多绑定2.4 发送日志2.5 订阅 三、整合代码3.1 EmitLogDirectApp.cs3.2 ReceiveLogsDirectApp.cs3.3 推送所有和接收e…...

华为Ensp模拟器配置RIP路由协议
目录 RIP路由详解:另一种视角解读 1. RIP简介:轻松理解基础概念 2. RIP的核心机制:距离向量的魅力 3. RIP的实用与局限 RIP配置实验 实验图 编辑 PC的ip配置 RIP配置步骤 测试 结语:RIP的今天与明天 RIP路由详解&…...

3. langgraph中的react agent使用 (在react agent添加系统提示)
环境准备 确保你已经安装了以下库: langchainlangchain_openailanggraph 你可以使用以下命令进行安装: pip install langchain langchain_openai langgraph代码实现 1. 初始化模型 首先,我们需要初始化智谱AI的聊天模型。 from langch…...

(02)ES6教程——Map、Set、Reflect、Proxy、字符串、数值、对象、数组、函数
目录 前言 一、Map Maps 和 Objects 的区别 Map的迭代 forEach() Map对象的操作 二、Set Set 中的特殊值 三、Reflect 四、Proxy 五、字符串 六、数值 七、对象 八、数组 九、函数 参考文献 前言 一、Map Map 对象保存键值对。任何值(对象或者原始值) 都可以…...

【快速解决】kafka崩了,重启之后,想继续消费,怎么做?
目录 一、怎么寻找我们关心的主题在崩溃之前消费到了哪里? 1、一个问题: 2、查看消费者消费主题__consumer_offsets 3、一个重要前提:消费时要提交offset 二、指定 Offset 消费 假如遇到kafka崩了,你重启kafka之后࿰…...

C++ 的发展
目录 C 的发展总结:编辑 1. C 的早期发展(1979-1985) 2. C 标准化过程(1985-1998) 3. C 标准演化(2003-2011) 4. C11(2011年) 5. C14(2014年…...

RabbitMQ 高级特性——延迟队列
文章目录 前言延迟队列延迟队列的概念TTL 死信队列模拟延迟队列设置队列的 TTL设置消息的 TTL 延迟队列插件安装并且启动插件服务使用插件实现延迟功能 前言 前面我们学习了 TTL 和死信队列,当队列中的消息达到了过期时间之后,那么这个消息就会被死信交…...

EAC(Estimate at Completion)和ETC(Estimate to Complete)
EAC 预计完工成本ETC 预计尚需成本Estimate at CompletionEstimate to Complete完成预估完工时尚需成本估算 EAC ETC ACETC EAC – AC 预测项目总成本,包含了到目前为止实际发生的成本(AC)和预计将发生的成本。如果EAC大于BAC…...

【React】状态管理之Zustand
🌈个人主页: 鑫宝Code 🔥热门专栏: 闲话杂谈| 炫酷HTML | JavaScript基础 💫个人格言: "如无必要,勿增实体" 文章目录 状态管理之Zustand引言1. Zustand 的核心特点1.1 简单直观的 API1.2 无需 Provi…...

Vue3打包自动生成版本JSON文件,添加系统版本检查,实现系统自动更新提示
实现该功能一共有三步。废话不多说,直接上代码!!! 第一步:打包时自动生成版本信息的js文件,versionUpdate.js import fs from fs; import path from path; import { ElMessageBox } from element-plus; i…...

海量数据有限内存系列问题解决方案
1. 排序问题 有限数据充足内存:内存中有十万整数,对所有数据进行排序。 内部排序即可 单节点海量数据有限内存:某台机器有一个文件,文件中包含六十亿整数,一个整数一行,可用内存1G,对所有数据…...

FFmpeg 4.3 音视频-多路H265监控录放C++开发十四,总结编码过程,从摄像头获得数据后,转成AVFrame,然后再次转成AVPacket,
也就是将摄像头采集到的YUV 的数据换成 AVFrame,然后再次转成 AVPacket,那么这AVPakcet数据要怎么办呢?分为三种情况: 一种是将AVPacket存储成h264文件,由于h264编码器在将avframe变成avpacket的时候就是按照h264的格…...

内容占位符:Kinetic Loader HTML+CSS 使用CSS制作三角形原理
内容占位符 前言 随着我们对HTML和CSS3的学习逐渐深入,相信大家都已经掌握了网页制作的基础知识,包括如何使用HTML标记构建网页结构,以及如何运用CSS样式美化页面。为了进一步巩固和熟练这些技能,今天我们一起来完成一个有趣且实…...

麒麟nginx配置
一、配置负载均衡 配置麒麟的yum源 vim /etc/yum.repos.d/kylin_aarch64.repo Copy 删除原来内容,写入如下yum源 [ks10-adv-os] name Kylin Linux Advanced Server 10 - Os baseurl http://update.cs2c.com.cn:8080/NS/V10/V10SP2/os/adv/lic/base/aarch64/ …...

如何在 Ubuntu 上安装 Emby 媒体服务器
Emby 是一个开源的媒体服务器解决方案,它能让你整理、流媒体播放和分享你的个人媒体收藏,包括电影、音乐、电视节目和照片。Emby 帮你集中多媒体内容,让你无论在家还是在外都能轻松访问。它还支持转码,让你能够播放各种格式的内容…...

Mac上详细配置java开发环境和软件(更新中)
文章目录 概要JDK的配置JDK下载安装配置JDK环境变量文件 Idea的安装Mysql安装和配置Navicat Premium16.1安装安装Vscode安装和配置Maven配置本地仓库配置阿里云私服Idea集成Maven 概要 这里使用的是M3型片 14.6版本的Mac 用到的资源放在网盘 链接: https://pan.baidu.com/s/17…...

jmeter常用配置元件介绍总结之定时器
系列文章目录 安装jmeter jmeter常用配置元件介绍总结之定时器 5.定时器5.1.固定定时器5.2.统一随机定时器5.3.Precise Throughput Timer5.4.Constant Throughput Timer5.5.Synchronizing Timer5.6.泊松随机定时器5.7.高斯随机定时器 5.定时器 5.1.固定定时器 固定定时器Cons…...

Spring——提前编译
提前编译:AOT AOT概述 JIT与AOT的区别 JIT和AOT 这个名词是指两种不同的编译方式,这两种编译方式的主要区别在于是否在“运行时”进行编译 (1)JIT, Just-in-time,动态(即时)编译,边运行边编译࿱…...

乐理的学习(音程)
二度,三度,六度,七度的大n度都是直接的音名到音名,如#A到#G的,这样为大n度 而这个基础上向内收,收半音为小n度,在小n度再收,为减n度 在大n度的基础上再向外扩半音,为增…...