MATLAB深度学习(二)——如何训练一个卷积神经网路
2.1 基本概念
从数学的角度看,机器学习的目标是建立输入和输出的函数关系,相当于 y = F(x)的过程。F(x)就是我们所说的模型,对于使用者来说,这个模型就是一个黑箱,我们不知道其具体的结构,但是给定一个输出,就可以得到我们想要的结果。F(x)的获得,我们通过的是实验法啊,经过大量数据训练出来的,我们定义一个损失函数L(x),记录真实输出与模型输出的偏差,通过数据的迭代使得损失函数L(x)达到最小。

在机器学习中,我们需要理解概念的术语的解释:
| 训练样本 | 用于训练的数据 |
| 训练 | 用于训练样本特征统计和归纳的过程 |
| 模型 | 总结出的规律、标准 |
| 验证 | 用于验证数据集评价模型是否准确 |
| 超参数 | 学习速率、迭代层神经元个数等 |
| 参数 | 权重、偏置等 |
| 泛化 | 模型对新样本的适应力 |
过拟合和欠拟合是常见的现象。但是需要说明的是,数据没有过多的这种说法,所谓的过拟合,是模型在训练集上的表现过于优异,模拟考100分你考了100分,99分,但是验证集上,相当于实际考试中你考了40分,换一场考试,换一个新的数据,导致严重误判。欠拟合就是数据过少,模型无法归纳出共性,在训练集和测试集表现都很差。

2.2 实例需求与实现步骤
第一章里面我们用了工具箱来实现,这一章我们强化一下,用m文件编写,我们构建训练一个三层卷积神经网络,对输入的图像进行预测,计算器预测准确率和RMSE均方根误差。实现步骤具体参考第一章。
%% 步骤1:加载和显示图像数据
[XTrain,~,YTrain] = digitTrain4DArrayData;
[XValidation,~,YValidation] = digitTest4DArrayData; % 随机显示20幅训练图像
numTrainImages = numel(YTrain);
figure
idx = randperm(numTrainImages,20);
for i = 1:numel(idx)subplot(4,5,i) imshow(XTrain(:,:,:,idx(i)))drawnow
end%% 步骤2:构建卷积神经网络
layers = [imageInputLayer([28 28 1]) %输入 像素为28*28,1通道 convolution2dLayer(3,8,'Padding','same') %卷积层1 卷积核大小为3*3,卷积核个数为8,卷积方式用0填充 batchNormalizationLayer %归一化 加快训练网络时的收敛速度 reluLayer %ReLU函数 激活函数 averagePooling2dLayer(2,'Stride',2) %平均池化 池化区域为2*2,步长为2 convolution2dLayer(3,16,'Padding','same') %第二 batchNormalizationLayer reluLayer averagePooling2dLayer(2,'Stride',2) convolution2dLayer(3,32,'Padding','same') %第三 batchNormalizationLayer reluLayer dropoutLayer(0.2) %随机将20%的输入置0,防止过拟合 fullyConnectedLayer(1) %全连接层输出个数为1 regressionLayer ]; %用于预测结果 %% 步骤3:配置训练选项
miniBatchSize = 128; % 设置小批量的大小为 128
validationFrequency = floor(numel(YTrain)/miniBatchSize); % 计算验证频率,根据训练数据的数量除以 miniBatchSize 并取整
% trainingOptions 用于配置网络训练的选项
options = trainingOptions('sgdm', ... % 选择随机梯度下降动量法(SGDM)作为优化器'MiniBatchSize',miniBatchSize, ... % 指定每次训练的小批量大小为 miniBatchSize'MaxEpochs',30, ... % 设置训练的最大轮数为 30'InitialLearnRate',0.001, ... % 设置初始学习率为 0.001'LearnRateSchedule','piecewise', ... % 学习率调整方式为分段调整'LearnRateDropFactor',0.1, ... % 每次学习率下降时,下降的比例为 0.1'LearnRateDropPeriod',20, ... % 每 20 个周期调整一次学习率'Shuffle','every-epoch', ... % 每轮训练后随机打乱数据'ValidationData',{XValidation,YValidation}, ... % 指定验证数据为 XValidation 和 YValidation'ValidationFrequency',validationFrequency, ... % 设置验证的频率'Plots','training-progress', ... % 启用训练进度的动态绘图'Verbose',true); % 打印详细的训练信息%% 步骤4:训练网络
net = trainNetwork(XTrain,YTrain,layers,options); % X训练集 Y测试集 网络结构 训练设置%% 步骤5:测试与评估
YPredicted = predict(net,XValidation); % 使用训练好的网络对验证集数据进行预测
predictionError = YValidation - YPredicted; % 计算预测误差(真实值减去预测值)% 计算准确率
thr = 10; % 设置误差阈值为 10
numCorrect = sum(abs(predictionError) < thr); % 统计误差绝对值小于阈值的预测数量
numValidationImages = numel(YValidation); % 获取验证集样本总数
Accuracy = numCorrect/numValidationImages; % 准确率计算为预测正确的样本数除以总样本数% 计算RMSE(均方根误差)的值
squares = predictionError.^2; % 计算误差的平方
RMSE = sqrt(mean(squares)); % 求均值后开平方,得到均方根误差
训练选项设置,读者可以进行打开帮助查看,里面还有很多内容,可以进行自动补全。

因为我有GPU,这里就改成GPU进行训练了
相关文章:
MATLAB深度学习(二)——如何训练一个卷积神经网路
2.1 基本概念 从数学的角度看,机器学习的目标是建立输入和输出的函数关系,相当于 y F(x)的过程。F(x)就是我们所说的模型,对于使用者来说,这个模型就是一个黑箱,我们不知…...
删除k8s 或者docker运行失败的脚本
vi delete_exited_containers.sh#!/bin/bash# 列出所有停止的容器并存储到数组 list_exited_containers() {echo -e "\nStopped containers:"containers()# 获取停止的容器信息并存入数组while IFS read -r line; docontainers("$line")done < <(do…...
重置docker版本的octoprint管理员账号密码
我的情况是octoprint安装在HiNAS系统的机顶盒上,只有一个账号,但是忘记了用户名和密码。有两个选择: 可以试试先找回用户名,然后尝试你的常用密码。直接重置所有账号。 1.找回用户名: 使用使用 docker exec -it <…...
prometheus监控数据远程写入Kafka集群
文章目录 前言一、环境简介1.1 环境简介1.2 部署清单1.3 组件版本 二、部署步骤2.1 prometheus部署2.2 kafka集群部署2.3 prometheus-kafka-adapter部署 三、数据验证四、总结 前言 根据项目要求,需将prometheus监控数据存储到kafka中。前面为了图方便就搭建了单机…...
Excel使用-弹窗“此工作簿包含到一个或多个可能不安全的外部源的链接”的发生与处理
文章目录 前言一、探讨问题发生原因1.引入外部公式2.引入外部数据验证二、问题现象排查及解决1.排查公式2.排查数据验证3.特殊处理方式总结前言 作为一种常用的办公软件,Excel被大家所熟知。尽管使用了多年,有时候在使用Excel时候也会发生一些不太常见的现象,需要用心核查下…...
C++小白实习日记——Day 2 TSCNS怎么读取当前时间
和老板问了一下,今天就可以自己上手了: 用TSCNS写了一个cpp,运行出来老板说让我去看看另一个项目是怎么做的 用TSCNS和std库获取当前时间 #include <iostream> #include <iomanip> #include "tscns.h"using namespace std;TSCN…...
【Pythonr入门第二讲】你好,世界
"Hello, World!" 是一种传统的编程入门示例,通常是程序员学习一门新编程语言时编写的第一个程序。这个程序的目标非常简单:在屏幕上输出 "Hello, World!" 这个字符串。尽管它非常简单,但具有重要的象征意义和实际价值。 …...
3D Streaming 在线互动展示系统:NVIDIA RTX 4090 加速实时渲染行业数字化转型
随着科技的飞速发展,实时渲染正逐步成为游戏与实时交互领域的重要驱动力。与离线渲染不同,实时渲染需要极高的计算性能,对硬件设备尤其是GPU的性能要求极高。随着 RTX 4090 显卡的问世,其强大的算力和创新技术,为实时渲…...
Oracle 单机及 RAC 环境 db_files 参数修改
Oracle 数据库中 DB_FILES 定义了数据库中数据文件的个数,默认值为200,如果创建数据库文件时超过DB_FILES 定义的值就会报 ORA-00059 错误。 下面分别演示单机及 RAC 环境下修改 db_files 参数的操作步骤。 一、单机环境 1.查询当前参数值 SQL> sh…...
消息中间件分类
消息中间件(Message Middleware)是一种在分布式系统中实现跨平台、跨应用通信的软件架构。它基于消息传递机制,允许不同系统、不同编程语言的应用之间进行异步通信。 常见的消息中间件类型包括: 1. JMS(Java Message S…...
讯飞、阿里云、腾讯云:Android 语音合成服务对比选择
在 移动端 接入语音合成方面,讯飞和腾讯云等都是优秀的选择,但各有其特点和优势。咱们的需求是需要支持普通话/英语/法语三种语言,以下是对各个平台的详细比较: 一、讯飞语音合成介绍 与语音听写相反,语音合成是将一段…...
SpringBoot开发——整合AJ-Captcha实现安全高效的滑动验证码
文章目录 一、什么是AJ-Captcha二、项目配置1、Maven依赖配置2、滑动验证码的基本原理3、 后端实现3.1 生成滑动验证码图片代码解释3.2 校验滑块位置代码解释4、前端部分代码解释5、Redis 缓存滑动验证码信息5.1 Redis配置5.2使用Redis缓存验证码数据5.3 校验时从Redis获取总结…...
Spring Security 核心组件
Spring Security 是一个功能全面的安全框架,用于处理基于 Spring 应用程序的身份验证和授权。 它提供了开箱即用的支持,采用行业标准的做法和机制来保护你的应用。 无论你是开发简单的 Web 应用还是复杂的微服务架构,理解 Spring Security …...
聚焦 AUTO TECH 2025华南展:探索新能源汽车发展新趋势
随着“新四化”浪潮的推进,汽车行业正经历前所未有的变革。中国新能源汽车正逐渐走向世界。国内汽车制造巨头如比亚迪、吉利、奇瑞、长安等,已经将出口提升至核心战略地位。中国新能源汽车的发展,不仅推动了全球汽车产业的电动化转型…...
Python-简单病毒程序合集(一)
前言:简单又有趣的Python恶搞代码,往往能给我们枯燥无味的生活带来一点乐趣,激发我们对编程的最原始的热爱。那么话不多说,我们直接开始今天的编程之路。 编程思路:本次我们将会用到os,paltform,threading,ctypes,sys,…...
[STM32]从零开始的STM32 HAL库环境搭建
一、前言 之前在搭建STM32的标准库环境时就告诉过大家,开发STM32的方式主要有三种。一种是最原始但是效率最高的寄存器开发,另一种是效率仅次于寄存器难度相对较低的标准库开发,最后一种是最为简单但是程序效率最低的HAL库开发。如果对于初学…...
Docker部署Kafka SASL_SSL认证,并集成到Spring Boot
1,创建证书和密钥 需要openssl环境,如果是Window下,下载openssl Win32/Win64 OpenSSL Installer for Windows - Shining Light Productions 还需要keytool环境,此环境是在jdk环境下 本案例所使用的账号密码均为: ka…...
Pr:音频过渡
Adobe Premiere Pro 自带一组共三个音频过渡 Audio Transitions效果。 对音频剪辑之间应用交叉淡化 Crossfade过渡,操作方式类似于应用视频过渡效果。 对于交叉淡化,要保证前剪辑的出点之后及后剪辑的入点之前有足够的预留内容(也称“手柄”&…...
HarmonyOs鸿蒙开发实战(17)=>沉浸式效果第二种方案一组件安全区方案
1.沉浸式效果的目的 开发应用沉浸式效果主要指通过调整状态栏、应用界面和导航条的显示效果来减少状态栏导航条等系统界面的突兀感,从而使用户获得最佳的UI体验。 2.组件安全区方案介绍 应用在默认情况下窗口背景绘制范围是全屏,但UI元素被限制在安全区内…...
从 const 到 mutable:C++ 中的优雅妥协与设计智慧
在C编程中,const 关键字被广泛应用于确保数据的不变性,它提供了一种强大的机制来防止意外修改,从而增强了代码的可靠性和可维护性。然而,在某些特定场景下,完全的不变性可能会限制设计的灵活性,这时 mutabl…...
进程地址空间(比特课总结)
一、进程地址空间 1. 环境变量 1 )⽤户级环境变量与系统级环境变量 全局属性:环境变量具有全局属性,会被⼦进程继承。例如当bash启动⼦进程时,环 境变量会⾃动传递给⼦进程。 本地变量限制:本地变量只在当前进程(ba…...
工业安全零事故的智能守护者:一体化AI智能安防平台
前言: 通过AI视觉技术,为船厂提供全面的安全监控解决方案,涵盖交通违规检测、起重机轨道安全、非法入侵检测、盗窃防范、安全规范执行监控等多个方面,能够实现对应负责人反馈机制,并最终实现数据的统计报表。提升船厂…...
线程同步:确保多线程程序的安全与高效!
全文目录: 开篇语前序前言第一部分:线程同步的概念与问题1.1 线程同步的概念1.2 线程同步的问题1.3 线程同步的解决方案 第二部分:synchronized关键字的使用2.1 使用 synchronized修饰方法2.2 使用 synchronized修饰代码块 第三部分ÿ…...
uni-app学习笔记二十二---使用vite.config.js全局导入常用依赖
在前面的练习中,每个页面需要使用ref,onShow等生命周期钩子函数时都需要像下面这样导入 import {onMounted, ref} from "vue" 如果不想每个页面都导入,需要使用node.js命令npm安装unplugin-auto-import npm install unplugin-au…...
根据万维钢·精英日课6的内容,使用AI(2025)可以参考以下方法:
根据万维钢精英日课6的内容,使用AI(2025)可以参考以下方法: 四个洞见 模型已经比人聪明:以ChatGPT o3为代表的AI非常强大,能运用高级理论解释道理、引用最新学术论文,生成对顶尖科学家都有用的…...
css3笔记 (1) 自用
outline: none 用于移除元素获得焦点时默认的轮廓线 broder:0 用于移除边框 font-size:0 用于设置字体不显示 list-style: none 消除<li> 标签默认样式 margin: xx auto 版心居中 width:100% 通栏 vertical-align 作用于行内元素 / 表格单元格ÿ…...
SiFli 52把Imagie图片,Font字体资源放在指定位置,编译成指定img.bin和font.bin的问题
分区配置 (ptab.json) img 属性介绍: img 属性指定分区存放的 image 名称,指定的 image 名称必须是当前工程生成的 binary 。 如果 binary 有多个文件,则以 proj_name:binary_name 格式指定文件名, proj_name 为工程 名&…...
代码随想录刷题day30
1、零钱兑换II 给你一个整数数组 coins 表示不同面额的硬币,另给一个整数 amount 表示总金额。 请你计算并返回可以凑成总金额的硬币组合数。如果任何硬币组合都无法凑出总金额,返回 0 。 假设每一种面额的硬币有无限个。 题目数据保证结果符合 32 位带…...
解析奥地利 XARION激光超声检测系统:无膜光学麦克风 + 无耦合剂的技术协同优势及多元应用
在工业制造领域,无损检测(NDT)的精度与效率直接影响产品质量与生产安全。奥地利 XARION开发的激光超声精密检测系统,以非接触式光学麦克风技术为核心,打破传统检测瓶颈,为半导体、航空航天、汽车制造等行业提供了高灵敏…...
实战设计模式之模板方法模式
概述 模板方法模式定义了一个操作中的算法骨架,并将某些步骤延迟到子类中实现。模板方法使得子类可以在不改变算法结构的前提下,重新定义算法中的某些步骤。简单来说,就是在一个方法中定义了要执行的步骤顺序或算法框架,但允许子类…...
