Android上运行Opencv(TODO)
在高通安卓平台上,确实可以通过 NDK 使用 OpenCV 并访问摄像头。NDK 提供了更高性能的计算能力,特别是在图像处理和计算密集型任务中,与 OpenCV 结合可以充分利用高通平台的硬件资源(如 NEON SIMD 指令集和 GPU 加速)。以下是详细的实现步骤。
步骤 1: 配置 OpenCV NDK 环境
(1)下载 OpenCV Android SDK
从 OpenCV 官网 下载并解压适用于 Android 的 SDK。
sdk/native/libs包含 NDK 所需的预编译库(如libopencv_java4.so)。sdk/native/jni/include包含 OpenCV 的头文件。
(2)集成 OpenCV 到 NDK 项目
在 Android 项目的 CMakeLists.txt 文件中,添加 OpenCV 头文件和库路径:
# 设置 OpenCV 的路径
set(OpenCV_DIR ${CMAKE_SOURCE_DIR}/opencv/sdk/native/jni)# 链接 OpenCV 库
include_directories(${OpenCV_DIR}/include)
add_library(libopencv SHARED IMPORTED)
set_target_properties(libopencv PROPERTIES IMPORTED_LOCATION ${OpenCV_DIR}/libs/${ANDROID_ABI}/libopencv_java4.so)# 链接 OpenCV 库到你的本地代码
target_link_libraries(${PROJECT_NAME} libopencv)
在 build.gradle 中,启用 C++ 和 OpenCV:
android {...externalNativeBuild {cmake {cppFlags "-frtti -fexceptions"abiFilters 'armeabi-v7a', 'arm64-v8a'}}
}
步骤 2: 使用 OpenCV 读取摄像头
在 NDK 中访问摄像头可以通过 Android 的 Camera2 API 或 CameraX,将帧数据传递给 OpenCV 进行处理。以下是实现方式:
(1)摄像头帧数据的处理流程
- 使用 Java 层的 Camera2 或 CameraX 获取图像帧(推荐 YUV 格式)。
- 将图像帧通过 JNI 传递到 C++ 层。
- 在 C++ 中使用 OpenCV 进行处理。
Java 层:将摄像头帧传递给 JNI
在 Java 层捕获摄像头帧并传递给 JNI:
// 在 Camera2 或 CameraX 的回调中获取帧数据
@Override
public void onImageAvailable(ImageReader reader) {Image image = reader.acquireLatestImage();if (image != null) {ByteBuffer buffer = image.getPlanes()[0].getBuffer();byte[] data = new byte[buffer.remaining()];buffer.get(data);processImage(data, image.getWidth(), image.getHeight());image.close();}
}// 调用 JNI 方法
public native void processImage(byte[] data, int width, int height);
C++ 层:处理图像数据
在 C++ 中接收图像数据并将其转换为 OpenCV 的 Mat 进行处理:
#include <jni.h>
#include <opencv2/opencv.hpp>extern "C" JNIEXPORT void JNICALL
Java_com_example_camera_MainActivity_processImage(JNIEnv* env, jobject, jbyteArray data, jint width, jint height) {// 将 Java byte[] 转为 C++ 数据jbyte* byteData = env->GetByteArrayElements(data, NULL);cv::Mat yuv(height + height / 2, width, CV_8UC1, (unsigned char*)byteData);// 转换为 RGB 格式cv::Mat rgb;cv::cvtColor(yuv, rgb, cv::COLOR_YUV2RGB_NV21);// 在这里使用 OpenCV 处理图像cv::Mat gray;cv::cvtColor(rgb, gray, cv::COLOR_RGB2GRAY);// 释放资源env->ReleaseByteArrayElements(data, byteData, JNI_ABORT);
}
(2)直接使用 OpenCV 的 VideoCapture
OpenCV 的 VideoCapture 类也可以直接在 C++ 层调用摄像头,但在 Android 上可能需要手动适配摄像头 ID 和权限管理。
示例代码:
#include <opencv2/opencv.hpp>void captureFromCamera() {cv::VideoCapture cap(0); // 打开摄像头 0if (!cap.isOpened()) {std::cerr << "Error: Unable to open the camera!" << std::endl;return;}cv::Mat frame;while (true) {cap >> frame; // 捕获帧if (frame.empty()) break;// 处理帧 (例如显示或存储)cv::imshow("Camera", frame);if (cv::waitKey(30) >= 0) break;}cap.release();
}
注意:直接使用 VideoCapture 可能会受限于 Android 的权限机制,通常推荐结合 Camera2 API 以确保兼容性。
步骤 3: 硬件加速优化
-
NEON SIMD 优化: 高通平台通常支持 NEON 指令集,确保在构建时启用优化:
set(CMAKE_CXX_FLAGS "${CMAKE_CXX_FLAGS} -mfpu=neon") -
OpenCL 加速: 如果使用 OpenCV 的 GPU 功能,可以启用 OpenCL:
cv::ocl::setUseOpenCL(true); -
高通 Hexagon DSP 优化(可选): 高通平台支持 Hexagon DSP,通过 Qualcomm SDK,可以进一步优化特定任务。
注意事项
- 权限管理: 确保在运行时动态申请摄像头权限。
- 实时性能: 使用高通硬件时,可以启用硬件加速(OpenCL 或 DSP)。
- 兼容性测试: 不同高通设备的摄像头驱动可能有所差异,需要测试适配。
通过这些步骤,你可以在高通安卓平台上使用 NDK 调用 OpenCV 并高效访问摄像头数据。
相关文章:
Android上运行Opencv(TODO)
在高通安卓平台上,确实可以通过 NDK 使用 OpenCV 并访问摄像头。NDK 提供了更高性能的计算能力,特别是在图像处理和计算密集型任务中,与 OpenCV 结合可以充分利用高通平台的硬件资源(如 NEON SIMD 指令集和 GPU 加速)。…...
动态IP黑白名单过滤的设计与实现(上篇设计思想)
文章目录 需求分析方案设计1、设计过程2、最终方案3、扩展知识 - 布隆过滤器 需求分析 一些恶意用户(可能是黑客、爬虫、DDoS 攻击者)可能频繁请求服务器资源,导致资源占用过高。因此我们需要一定的手段实时阻止可疑或恶意的用户,…...
LeetCode 力扣 热题 100道(五)最长回文子串(C++)
最长回文子串 给你一个字符串 s,找到 s 中最长的 回文子串。 回文性 如果字符串向前和向后读都相同,则它满足 回文性 子字符串子字符串 是字符串中连续的 非空 字符序列。 动态规划法 class Solution { public:string longestPalindrome(string s) {i…...
Docker--Docker Registry(镜像仓库)
什么是Docker Registry? 镜像仓库(Docker Registry)是Docker生态系统中用于存储、管理和分发Docker镜像的关键组件。 镜像仓库主要负责存储Docker镜像,这些镜像包含了应用程序及其相关的依赖项和配置,是构建和运行Doc…...
maven手动上传jar到私服仓库:mvn deploy:deploy-file命令
一、场景 现需要将公司内部的jar包上传到私服仓库,供其他同事使用,此时就需要用到mvn deploy:deploy-file命令。 二、 mvn deploy:deploy-file命令 举个栗子: mvn deploy:deploy-file -DgroupIdorg.pttsql -DartifactIdpttsql -Dversi…...
【机器学习】机器学习中用到的高等数学知识-1.线性代数 (Linear Algebra)
向量(Vector)和矩阵(Matrix):用于表示数据集(Dataset)和特征(Feature)。矩阵运算:加法、乘法和逆矩阵(Inverse Matrix)等,用于计算模型参数。特征值(Eigenvalues)和特征向量(Eigenvectors)&…...
无插件H5播放器EasyPlayer.js网页web无插件播放器选择全屏时,视频区域并没有全屏问题的解决方案
EasyPlayer.js H5播放器,是一款能够同时支持HTTP、HTTP-FLV、HLS(m3u8)、WS、WEBRTC、FMP4视频直播与视频点播等多种协议,支持H.264、H.265、AAC、G711A、MP3等多种音视频编码格式,支持MSE、WASM、WebCodec等多种解码方…...
Idea中创建和联系MySQL等数据库
备注:电脑中要已下好自己需要的MySQL数据库软件 MySQL社区版下载链接: https://dev.mysql.com/downloads/installer/ 优点: 1.相比与在命令行中管理数据库,idea提供了图形化管理,简单明了; 2.便于与后端…...
【pytest】pytest注解使用指南
前言:在 pytest 测试框架中,注解(通常称为装饰器)用于为测试函数、类或方法提供额外的信息或元数据。这些装饰器可以影响测试的执行方式、报告方式以及测试的组织结构。pytest 提供了多种内置的装饰器,以及通过插件扩展…...
在Unity中使用Epplus写Excel
Overview 本文旨在帮助你快速入门,该库发展多年内容庞大(官方文档写的极好:https://github.com/EPPlusSoftware/EPPlus/wiki),有些功能在Unity环境可能你永远都不会使用. 官方的一个Demo: https://github.com/EPPlusSoftware/EPPlus.Samples.CSharp 如果你只有读的需求,可以…...
初识算法 · 模拟(2)
目录 前言: Z字形变换 题目解析 算法原理 算法编写 数青蛙 题目解析 算法原理 算法编写 前言: 本文的主题是模拟,通过两道题目讲解,一道是Z字形变化,一道是数青蛙。 链接分别为: 1419. 数青蛙…...
【Java面试】—— 创建线程池的两种方式(执行流程、拒绝策略)(详细)
目录 一、ThreadPoolExecutor(推荐)(重点) 1、参数 2、执行流程 3、常用方法 4、任务拒绝策略 二、Executors(不推荐) 1、常用方法 2、存在的问题 一、ThreadPoolExecutor(推荐)(重点) 1、参数 使用指定的初始化参数创建一个新的线程池对象 public Thread…...
Docker在微服务架构中的应用
💓 博客主页:瑕疵的CSDN主页 📝 Gitee主页:瑕疵的gitee主页 ⏩ 文章专栏:《热点资讯》 Docker在微服务架构中的应用 Docker在微服务架构中的应用 Docker在微服务架构中的应用 引言 Docker 基本概念 1. 容器 2. 镜像 3…...
苹果ASA归因对接以及API接入
一、归因概要 广告归因,目的是用于衡量广告带来的激活用户的成本以及后续进一步的用户质量表现。 Apple Ads 广告平台是基于 App Store(站内广告),同时属于自归因平台(通常称为 SAN)。这两个因素ÿ…...
Git常用操作学习
目录 Git基础概述 1.1 什么是Git? 1.2 Git的优点Git工作流程 2.1 集中式工作流程 2.2 功能分支工作流程 2.3 Git Flow工作流程克隆仓库 3.1 使用git clone 3.2 克隆特定分支分支管理 4.1 创建分支 4.2 切换分支 4.3 合并分支 4.4 删除分支提交和推送更改 5.1 查看状…...
2.5D视觉——Aruco码定位检测
目录 1.什么是Aruco标记2.Aruco码解码说明2.1 Original ArUco2.2 预设的二维码字典2.3 大小Aruco二维码叠加 3.函数说明3.1 cv::aruco::detectMarkers3.2 cv::solvePnP 4.代码注解4.1 Landmark图说明4.2 算法源码注解 1.什么是Aruco标记 ArUco标记最初由S.Garrido-Jurado等人在…...
【PSQLException: An I/O error occurred while sending to the backend.】
PSQLException: An I/O error occurred while sending to the backend. java项目定时任务执行耗时很长的sql语句(很多条sql,从很多表中,很多数据中查询,处理)总之,耗时很长(PG数据库)。报错I/O error,Caused by : java.net.SocketTimeoutException: Read time out场景…...
图像基础算法学习笔记
目录 概要 一、图像采集 二、图像标注 四、图像几何变换 五、图像边缘检测 Sobel算子 Scharrt算子 Laplacian算子 Canny边缘检测 六、形态学转换 概要 参考书籍:《机器视觉与人工智能应用开发技术》 廖建尚,钟君柳 出版时间:2024-…...
【Elasticsearch】01-ES安装
1. 安装 安装elasticsearch。 docker run -d \--name es \-e "ES_JAVA_OPTS-Xms512m -Xmx512m" \-e "discovery.typesingle-node" \-v es-data:/usr/share/elasticsearch/data \-v es-plugins:/usr/share/elasticsearch/plugins \--privileged \--networ…...
网络性能测试
一、iperf网络性能测试工具 测试udp丢包率 在服务器启动 iperf 服务端 iperf -p 9000 -s -u -i 1参数说明: -p : 端口号 -s : 表示服务端 -u : 表示 udp 协议 -i : 检测的时间间隔(单位,秒) 在客户端,启动 iperf 客户端 iperf -c xxx.xxx.14…...
Linux链表操作全解析
Linux C语言链表深度解析与实战技巧 一、链表基础概念与内核链表优势1.1 为什么使用链表?1.2 Linux 内核链表与用户态链表的区别 二、内核链表结构与宏解析常用宏/函数 三、内核链表的优点四、用户态链表示例五、双向循环链表在内核中的实现优势5.1 插入效率5.2 安全…...
docker详细操作--未完待续
docker介绍 docker官网: Docker:加速容器应用程序开发 harbor官网:Harbor - Harbor 中文 使用docker加速器: Docker镜像极速下载服务 - 毫秒镜像 是什么 Docker 是一种开源的容器化平台,用于将应用程序及其依赖项(如库、运行时环…...
线程与协程
1. 线程与协程 1.1. “函数调用级别”的切换、上下文切换 1. 函数调用级别的切换 “函数调用级别的切换”是指:像函数调用/返回一样轻量地完成任务切换。 举例说明: 当你在程序中写一个函数调用: funcA() 然后 funcA 执行完后返回&…...
屋顶变身“发电站” ,中天合创屋面分布式光伏发电项目顺利并网!
5月28日,中天合创屋面分布式光伏发电项目顺利并网发电,该项目位于内蒙古自治区鄂尔多斯市乌审旗,项目利用中天合创聚乙烯、聚丙烯仓库屋面作为场地建设光伏电站,总装机容量为9.96MWp。 项目投运后,每年可节约标煤3670…...
Cinnamon修改面板小工具图标
Cinnamon开始菜单-CSDN博客 设置模块都是做好的,比GNOME简单得多! 在 applet.js 里增加 const Settings imports.ui.settings;this.settings new Settings.AppletSettings(this, HTYMenusonichy, instance_id); this.settings.bind(menu-icon, menu…...
全志A40i android7.1 调试信息打印串口由uart0改为uart3
一,概述 1. 目的 将调试信息打印串口由uart0改为uart3。 2. 版本信息 Uboot版本:2014.07; Kernel版本:Linux-3.10; 二,Uboot 1. sys_config.fex改动 使能uart3(TX:PH00 RX:PH01),并让boo…...
AI病理诊断七剑下天山,医疗未来触手可及
一、病理诊断困局:刀尖上的医学艺术 1.1 金标准背后的隐痛 病理诊断被誉为"诊断的诊断",医生需通过显微镜观察组织切片,在细胞迷宫中捕捉癌变信号。某省病理质控报告显示,基层医院误诊率达12%-15%,专家会诊…...
基于IDIG-GAN的小样本电机轴承故障诊断
目录 🔍 核心问题 一、IDIG-GAN模型原理 1. 整体架构 2. 核心创新点 (1) 梯度归一化(Gradient Normalization) (2) 判别器梯度间隙正则化(Discriminator Gradient Gap Regularization) (3) 自注意力机制(Self-Attention) 3. 完整损失函数 二…...
【前端异常】JavaScript错误处理:分析 Uncaught (in promise) error
在前端开发中,JavaScript 异常是不可避免的。随着现代前端应用越来越多地使用异步操作(如 Promise、async/await 等),开发者常常会遇到 Uncaught (in promise) error 错误。这个错误是由于未正确处理 Promise 的拒绝(r…...
破解路内监管盲区:免布线低位视频桩重塑停车管理新标准
城市路内停车管理常因行道树遮挡、高位设备盲区等问题,导致车牌识别率低、逃费率高,传统模式在复杂路段束手无策。免布线低位视频桩凭借超低视角部署与智能算法,正成为破局关键。该设备安装于车位侧方0.5-0.7米高度,直接规避树枝遮…...
