GRU(门控循环单元)详解
1️⃣ GRU介绍
前面介绍的LSTM可以有效缓解RNN的梯度消失问题,但是其内部结构比较复杂,因此衍生出了更加简化的GRU。GRU把输入门和遗忘门整合成一个更新门,并且合并了细胞状态和隐藏状态。于2014年被提出
2️⃣ 原理介绍
GRU的结构和最简单的RNN是一样的。当前输入为 x t x_t xt,上一个节点传递下来的隐层状态为 h t − 1 h_{t-1} ht−1,这个隐层状态包含了之前节点的相关信息。根据 x t x_t xt和 h t − 1 h_{t-1} ht−1,GRU会得到当前时间步的输出 y t y_t yt和传递给下一个节点的隐层状态 h t h_t ht,实际上 y t y_t yt就是等于 h t h_t ht

下面介绍详细的原理,下图展示了GRU的详细结构:

第一步,计算重置门,它的参数是 W r W_r Wr,用于控制之前的记忆需要保留多少。该门的输入是前一个隐层状态 h t − 1 h_{t-1} ht−1以及当前时间步的输入 x t x_t xt,输出为 r t r_t rt,在0到1之间,:
r t = σ ( W r ⋅ [ h t − 1 , x t ] ) r_{t}=\sigma\left(W_{r}\cdot[h_{t-1},x_{t}]\right) rt=σ(Wr⋅[ht−1,xt])其中, σ \sigma σ表示sigmoid激活函数
第二步,我们来看更新门,它的参数为 W z W_z Wz,它将LSTM中的输入门和遗忘门结合,决定当前时间步应该保留多少以前的记忆,多少新信息应该加入。该门的输入也是前一个隐层状态 h t − 1 h_{t-1} ht−1以及当前时间步的输入 x t x_t xt,省略了偏置参数 b b b,输出为 z t ,在 0 到 1 之间, z_t,在0到1之间, zt,在0到1之间,公式具体表达为:
z t = σ ( W z ⋅ [ h t − 1 , x t ] ) z_{t}=\sigma\left(W_{z}\cdot[h_{t-1},x_{t}]\right) zt=σ(Wz⋅[ht−1,xt])其中, σ \sigma σ表示sigmoid激活函数
第三步,计算输入值,输入值由前一个隐层状态 h t − 1 h_{t-1} ht−1,当前的 x t x_t xt以及重置门 r t r_t rt得到。 r t ∗ h t − 1 r_{t}*h_{t-1} rt∗ht−1可以理解为之前的记忆保留多少来学习新的内容 x t x_t xt, h ~ t \tilde{h}_{t} h~t相当于利用之前的记忆对新的内容理解的部分
h ~ t = tanh ( W ⋅ [ r t ∗ h t − 1 , x t ] ) \tilde{h}_{t}=\operatorname{tanh}\left(W\cdot[r_{t}*h_{t-1},x_{t}]\right) h~t=tanh(W⋅[rt∗ht−1,xt])
第四步,计算当前输出 h t h_t ht,由两部分,一部分是之前信息的影响 h t − 1 h_{t-1} ht−1,后一部分是当前输入的影响 h ~ t \tilde{h}_t h~t。 z t z_{t} zt是更新门的输出,取值在0-1之间。给 h t − 1 h_{t-1} ht−1赋予 ( 1 − z t ) (1-z_t) (1−zt)权重,给 h ~ t \tilde{h}_t h~t赋予 z t z_{t} zt权重:
h t = ( 1 − z t ) ∗ h t − 1 + z t ∗ h ~ t \begin{aligned}h_t=(1-z_t)*h_{t-1}+z_t*\tilde{h}_t\end{aligned} ht=(1−zt)∗ht−1+zt∗h~t
我前面写的这篇文章中介绍了为什么RNN会有梯度消失和爆炸:点这里查看
主要原因是反向传播时,梯度中有这一部分:
∏ j = k + 1 3 ∂ s j ∂ s j − 1 = ∏ j = k + 1 3 t a n h ′ W \prod_{j=k+1}^3\frac{\partial s_j}{\partial s_{j-1}}=\prod_{j=k+1}^3tanh^{'}W j=k+1∏3∂sj−1∂sj=j=k+1∏3tanh′W
那么GRU如何缓解RNN的梯度消失问题呢?
在GRU里,隐层的输出换了个符号,从 s s s变成 h h h了。因此我们来分析一下 ∂ h t ∂ h t − 1 \frac{\partial h_t}{\partial h_{t-1}} ∂ht−1∂ht。 我们可以得到:
∂ h t ∂ h t − 1 = ( 1 − z t ) + … \frac{\partial h_t}{\partial h_{t-1}}=(1-z_t)+\ldots ∂ht−1∂ht=(1−zt)+…
因此我们可以通过控制更新门的输出 z t z_t zt来控制梯度,以缓解梯度消失问题
3️⃣ 总结
-
GRU和LSTM对比:

-
GRU通过控制更新门的输出 z t z_t zt来控制梯度,以缓解梯度消失问题
4️⃣ 参考
- Pytorch_LSTM与GRU
- 白话机器学习-从RNN、LSTM到GRU
相关文章:
GRU(门控循环单元)详解
1️⃣ GRU介绍 前面介绍的LSTM可以有效缓解RNN的梯度消失问题,但是其内部结构比较复杂,因此衍生出了更加简化的GRU。GRU把输入门和遗忘门整合成一个更新门,并且合并了细胞状态和隐藏状态。于2014年被提出 2️⃣ 原理介绍 GRU的结构和最简单…...
【代码随想录|回溯算法排列问题】
491.非减子序列 题目链接. - 力扣(LeetCode) 这里和子集问题||很像,但是这里要的是非递减的子序列,要按照给的数组的顺序来进行排序,就是如果我给定的数组是[4,4,3,2,1],如果用子集||的做法先进行排序得到…...
Azure Kubernetes Service (AKS)资源优化策略
针对Azure Kubernetes Service (AKS)的资源优化策略,可以从多个维度进行考虑和实施,以提升集群的性能、效率和资源利用率。以下是一些关键的优化策略: 一、 Pod资源请求和限制 设置Pod请求和限制:在YAML清单中为所有Pod设置CPU和…...
R语言 | 宽数据变成一列,保留对应的行名和列名
对应稀疏矩阵 转为 宽数据框,见 数据格式转换 | 稀疏矩阵3列还原为原始矩阵/数据框,自定义函数 df3toMatrix() 目的:比如查看鸢尾花整体的指标分布,4个指标分开,画到一个图中。每个品种画一个图。 1.数据整理&#…...
RTSP播放器EasyPlayer.js播放器在webview环境下,PC和安卓能够正常播放,IOS环境下播放器会黑屏无法播放
流媒体技术分为顺序流式传输和实时流式传输两种。顺序流式传输允许用户在下载的同时观看,而实时流式传输则允许用户实时观看内容。 流媒体播放器负责解码和呈现内容,常见的播放器包括VLC和HTML5播放器等。流媒体技术的应用场景广泛,包括娱乐…...
.NET周刊【11月第3期 2024-11-17】
国内文章 .NET 9使用Scalar替代Swagger https://www.cnblogs.com/netry/p/18543378/scalar-an-alternative-to-swagger-in-dotnet-9 .NET 9 移除了 Swashbuckle.AspNetCore,因为其维护不力,并转向 Microsoft.AspNetCore.OpenApi。除了 Swashbuckle&am…...
c语言数据22数组使用
1.1数组分配的空间 int a[10]{1,2,3,4,5,6,7,8,9,10};//分配空间 元素类型大小int4*元素个数1040byte 元素之间空间连续 数组名代表数组首元素地址;a 取的是a[0]的地址;&a 是整个数组的地址 说明: 数组首元素地址: 0号元…...
深入理解TensorFlow中的形状处理函数
摘要 在深度学习模型的构建过程中,张量(Tensor)的形状管理是一项至关重要的任务。特别是在使用TensorFlow等框架时,确保张量的形状符合预期是保证模型正确运行的基础。本文将详细介绍几个常用的形状处理函数,包括get_…...
MySQL数据库3——函数与约束
一.函数 1.字符串函数 MySQL中内置了很多字符串函数,常用的几个如下: 使用方法: SELECT 函数名(参数);注意:MySQL中的索引值即下标都是从1开始的。 2.数值函数 常见的数值函数如下: 使用方法: SELECT…...
⾃动化运维利器 Ansible-Jinja2
Ansible-Jinja2 一、Ansible Jinja2模板背景介绍二、 JinJa2 模板2.1 JinJa2 是什么2.2 JinJa2逻辑控制 三、如何使用模板四、实例演示 按顺序食用,口味更佳 ( 1 ) ⾃动化运维利器Ansible-基础 ( 2 ) ⾃动化运维利器 Ansible-Playbook ( 3 ) ⾃动化运维利器 Ansible…...
博客文章怎么设计分类与标签
首发地址(欢迎大家访问):博客文章怎么设计分类与标签 新网站基本上算是迁移完了,迁移之后在写文章的过程中,发现个人的文章分类和标签做的太混乱了,分类做的像标签,标签也不是特别的丰富&#x…...
FastDDS之DataSharing
目录 原理说明限制条件配置Data-Sharing delivery kindData-sharing domain identifiers最大domain identifiers数量共享内存目录 DataReader和DataWriter的history耦合DataAck阻塞复用 本文详细记录Fast DDS中Data Sharing的实现原理和代码分析。 DataSharing的概念࿱…...
计算机网络在线测试-概述
单项选择题 第1题 数据通信中,数据传输速率(比特率,bps)是指每秒钟发送的()。 二进制位数 (我的答案) 符号数 字节数 码元数 第2题 一座大楼内的一个计算机网络系统…...
【MySQL】数据库必考知识点:查询操作全面详解与深度解剖
前言:本节内容讲述基本查询, 基本查询要分为两篇文章进行讲解。 本篇文章主要讲解的是表内删除数据、查询结果进行插入、聚合统计、分组聚合统计。 如果想要学习对应知识的可以观看哦。 ps:本篇内容友友们只要会创建表了就可以看起来了哦!&am…...
鲸鱼机器人和乐高机器人的比较
鲸鱼机器人和乐高机器人各有其独特的优势和特点,家长在选择时可以根据孩子的年龄、兴趣、经济能力等因素进行综合考虑,选择最适合孩子的教育机器人产品。 优势 鲸鱼机器人 1)价格亲民:鲸鱼机器人的产品价格相对乐高更为亲民&…...
游戏引擎学习第15天
视频参考:https://www.bilibili.com/video/BV1mbUBY7E24 关于游戏中文件输入输出(IO)操作的讨论。主要分为两类: 只读资产的加载 这部分主要涉及游戏中用于展示和运行的只读资源,例如音乐、音效、美术资源(如 3D 模型和…...
详解模版类pair
目录 一、pair简介 二、 pair的创建 三、pair的赋值 四、pair的排序 (1)用sort默认排序 (2)用sort中的自定义排序进行排序 五、pair的交换操作 一、pair简介 pair是一个模版类,可以存储两个值的键值对.first以…...
AI驱动的桌面笔记应用Reor
网友 竹林风 说,已经成功的用 mxbai-embed-large 映射到 text-embedding-ada-002,并测试成功了。不愧是爱折腾的人,老苏还没时间试,因为又找到了另一个支持 AI 的桌面版笔记 Reor Reor 简介 什么是 Reor ? Reor 是一款由人工智…...
搜维尔科技:使用sensglove触觉反馈手套进行虚拟拆装操作
使用sensglove触觉反馈手套进行虚拟拆装操作 搜维尔科技:使用sensglove触觉反馈手套进行虚拟拆装操作...
深入理解电子邮件安全:SPF、DKIM 和 DMARC 完全指南
引言 在当今数字时代,电子邮件已经成为我们日常通信中不可或缺的一部分。然而,随之而来的安全问题也日益突出。邮件欺诈、钓鱼攻击和垃圾邮件等威胁不断增加,这促使了多种邮件安全验证机制的出现。本文将深入探讨三个最重要的邮件安全协议&a…...
Lombok 的 @Data 注解失效,未生成 getter/setter 方法引发的HTTP 406 错误
HTTP 状态码 406 (Not Acceptable) 和 500 (Internal Server Error) 是两类完全不同的错误,它们的含义、原因和解决方法都有显著区别。以下是详细对比: 1. HTTP 406 (Not Acceptable) 含义: 客户端请求的内容类型与服务器支持的内容类型不匹…...
el-switch文字内置
el-switch文字内置 效果 vue <div style"color:#ffffff;font-size:14px;float:left;margin-bottom:5px;margin-right:5px;">自动加载</div> <el-switch v-model"value" active-color"#3E99FB" inactive-color"#DCDFE6"…...
srs linux
下载编译运行 git clone https:///ossrs/srs.git ./configure --h265on make 编译完成后即可启动SRS # 启动 ./objs/srs -c conf/srs.conf # 查看日志 tail -n 30 -f ./objs/srs.log 开放端口 默认RTMP接收推流端口是1935,SRS管理页面端口是8080,可…...
让AI看见世界:MCP协议与服务器的工作原理
让AI看见世界:MCP协议与服务器的工作原理 MCP(Model Context Protocol)是一种创新的通信协议,旨在让大型语言模型能够安全、高效地与外部资源进行交互。在AI技术快速发展的今天,MCP正成为连接AI与现实世界的重要桥梁。…...
[Java恶补day16] 238.除自身以外数组的乘积
给你一个整数数组 nums,返回 数组 answer ,其中 answer[i] 等于 nums 中除 nums[i] 之外其余各元素的乘积 。 题目数据 保证 数组 nums之中任意元素的全部前缀元素和后缀的乘积都在 32 位 整数范围内。 请 不要使用除法,且在 O(n) 时间复杂度…...
【论文阅读28】-CNN-BiLSTM-Attention-(2024)
本文把滑坡位移序列拆开、筛优质因子,再用 CNN-BiLSTM-Attention 来动态预测每个子序列,最后重构出总位移,预测效果超越传统模型。 文章目录 1 引言2 方法2.1 位移时间序列加性模型2.2 变分模态分解 (VMD) 具体步骤2.3.1 样本熵(S…...
精益数据分析(97/126):邮件营销与用户参与度的关键指标优化指南
精益数据分析(97/126):邮件营销与用户参与度的关键指标优化指南 在数字化营销时代,邮件列表效度、用户参与度和网站性能等指标往往决定着创业公司的增长成败。今天,我们将深入解析邮件打开率、网站可用性、页面参与时…...
jmeter聚合报告中参数详解
sample、average、min、max、90%line、95%line,99%line、Error错误率、吞吐量Thoughput、KB/sec每秒传输的数据量 sample(样本数) 表示测试中发送的请求数量,即测试执行了多少次请求。 单位,以个或者次数表示。 示例:…...
python爬虫——气象数据爬取
一、导入库与全局配置 python 运行 import json import datetime import time import requests from sqlalchemy import create_engine import csv import pandas as pd作用: 引入数据解析、网络请求、时间处理、数据库操作等所需库。requests:发送 …...
零知开源——STM32F103RBT6驱动 ICM20948 九轴传感器及 vofa + 上位机可视化教程
STM32F1 本教程使用零知标准板(STM32F103RBT6)通过I2C驱动ICM20948九轴传感器,实现姿态解算,并通过串口将数据实时发送至VOFA上位机进行3D可视化。代码基于开源库修改优化,适合嵌入式及物联网开发者。在基础驱动上新增…...
