GRU(门控循环单元)详解
1️⃣ GRU介绍
前面介绍的LSTM可以有效缓解RNN的梯度消失问题,但是其内部结构比较复杂,因此衍生出了更加简化的GRU。GRU把输入门和遗忘门整合成一个更新门,并且合并了细胞状态和隐藏状态。于2014年被提出
2️⃣ 原理介绍
GRU的结构和最简单的RNN是一样的。当前输入为 x t x_t xt,上一个节点传递下来的隐层状态为 h t − 1 h_{t-1} ht−1,这个隐层状态包含了之前节点的相关信息。根据 x t x_t xt和 h t − 1 h_{t-1} ht−1,GRU会得到当前时间步的输出 y t y_t yt和传递给下一个节点的隐层状态 h t h_t ht,实际上 y t y_t yt就是等于 h t h_t ht

下面介绍详细的原理,下图展示了GRU的详细结构:

第一步,计算重置门,它的参数是 W r W_r Wr,用于控制之前的记忆需要保留多少。该门的输入是前一个隐层状态 h t − 1 h_{t-1} ht−1以及当前时间步的输入 x t x_t xt,输出为 r t r_t rt,在0到1之间,:
r t = σ ( W r ⋅ [ h t − 1 , x t ] ) r_{t}=\sigma\left(W_{r}\cdot[h_{t-1},x_{t}]\right) rt=σ(Wr⋅[ht−1,xt])其中, σ \sigma σ表示sigmoid激活函数
第二步,我们来看更新门,它的参数为 W z W_z Wz,它将LSTM中的输入门和遗忘门结合,决定当前时间步应该保留多少以前的记忆,多少新信息应该加入。该门的输入也是前一个隐层状态 h t − 1 h_{t-1} ht−1以及当前时间步的输入 x t x_t xt,省略了偏置参数 b b b,输出为 z t ,在 0 到 1 之间, z_t,在0到1之间, zt,在0到1之间,公式具体表达为:
z t = σ ( W z ⋅ [ h t − 1 , x t ] ) z_{t}=\sigma\left(W_{z}\cdot[h_{t-1},x_{t}]\right) zt=σ(Wz⋅[ht−1,xt])其中, σ \sigma σ表示sigmoid激活函数
第三步,计算输入值,输入值由前一个隐层状态 h t − 1 h_{t-1} ht−1,当前的 x t x_t xt以及重置门 r t r_t rt得到。 r t ∗ h t − 1 r_{t}*h_{t-1} rt∗ht−1可以理解为之前的记忆保留多少来学习新的内容 x t x_t xt, h ~ t \tilde{h}_{t} h~t相当于利用之前的记忆对新的内容理解的部分
h ~ t = tanh ( W ⋅ [ r t ∗ h t − 1 , x t ] ) \tilde{h}_{t}=\operatorname{tanh}\left(W\cdot[r_{t}*h_{t-1},x_{t}]\right) h~t=tanh(W⋅[rt∗ht−1,xt])
第四步,计算当前输出 h t h_t ht,由两部分,一部分是之前信息的影响 h t − 1 h_{t-1} ht−1,后一部分是当前输入的影响 h ~ t \tilde{h}_t h~t。 z t z_{t} zt是更新门的输出,取值在0-1之间。给 h t − 1 h_{t-1} ht−1赋予 ( 1 − z t ) (1-z_t) (1−zt)权重,给 h ~ t \tilde{h}_t h~t赋予 z t z_{t} zt权重:
h t = ( 1 − z t ) ∗ h t − 1 + z t ∗ h ~ t \begin{aligned}h_t=(1-z_t)*h_{t-1}+z_t*\tilde{h}_t\end{aligned} ht=(1−zt)∗ht−1+zt∗h~t
我前面写的这篇文章中介绍了为什么RNN会有梯度消失和爆炸:点这里查看
主要原因是反向传播时,梯度中有这一部分:
∏ j = k + 1 3 ∂ s j ∂ s j − 1 = ∏ j = k + 1 3 t a n h ′ W \prod_{j=k+1}^3\frac{\partial s_j}{\partial s_{j-1}}=\prod_{j=k+1}^3tanh^{'}W j=k+1∏3∂sj−1∂sj=j=k+1∏3tanh′W
那么GRU如何缓解RNN的梯度消失问题呢?
在GRU里,隐层的输出换了个符号,从 s s s变成 h h h了。因此我们来分析一下 ∂ h t ∂ h t − 1 \frac{\partial h_t}{\partial h_{t-1}} ∂ht−1∂ht。 我们可以得到:
∂ h t ∂ h t − 1 = ( 1 − z t ) + … \frac{\partial h_t}{\partial h_{t-1}}=(1-z_t)+\ldots ∂ht−1∂ht=(1−zt)+…
因此我们可以通过控制更新门的输出 z t z_t zt来控制梯度,以缓解梯度消失问题
3️⃣ 总结
-
GRU和LSTM对比:

-
GRU通过控制更新门的输出 z t z_t zt来控制梯度,以缓解梯度消失问题
4️⃣ 参考
- Pytorch_LSTM与GRU
- 白话机器学习-从RNN、LSTM到GRU
相关文章:
GRU(门控循环单元)详解
1️⃣ GRU介绍 前面介绍的LSTM可以有效缓解RNN的梯度消失问题,但是其内部结构比较复杂,因此衍生出了更加简化的GRU。GRU把输入门和遗忘门整合成一个更新门,并且合并了细胞状态和隐藏状态。于2014年被提出 2️⃣ 原理介绍 GRU的结构和最简单…...
【代码随想录|回溯算法排列问题】
491.非减子序列 题目链接. - 力扣(LeetCode) 这里和子集问题||很像,但是这里要的是非递减的子序列,要按照给的数组的顺序来进行排序,就是如果我给定的数组是[4,4,3,2,1],如果用子集||的做法先进行排序得到…...
Azure Kubernetes Service (AKS)资源优化策略
针对Azure Kubernetes Service (AKS)的资源优化策略,可以从多个维度进行考虑和实施,以提升集群的性能、效率和资源利用率。以下是一些关键的优化策略: 一、 Pod资源请求和限制 设置Pod请求和限制:在YAML清单中为所有Pod设置CPU和…...
R语言 | 宽数据变成一列,保留对应的行名和列名
对应稀疏矩阵 转为 宽数据框,见 数据格式转换 | 稀疏矩阵3列还原为原始矩阵/数据框,自定义函数 df3toMatrix() 目的:比如查看鸢尾花整体的指标分布,4个指标分开,画到一个图中。每个品种画一个图。 1.数据整理&#…...
RTSP播放器EasyPlayer.js播放器在webview环境下,PC和安卓能够正常播放,IOS环境下播放器会黑屏无法播放
流媒体技术分为顺序流式传输和实时流式传输两种。顺序流式传输允许用户在下载的同时观看,而实时流式传输则允许用户实时观看内容。 流媒体播放器负责解码和呈现内容,常见的播放器包括VLC和HTML5播放器等。流媒体技术的应用场景广泛,包括娱乐…...
.NET周刊【11月第3期 2024-11-17】
国内文章 .NET 9使用Scalar替代Swagger https://www.cnblogs.com/netry/p/18543378/scalar-an-alternative-to-swagger-in-dotnet-9 .NET 9 移除了 Swashbuckle.AspNetCore,因为其维护不力,并转向 Microsoft.AspNetCore.OpenApi。除了 Swashbuckle&am…...
c语言数据22数组使用
1.1数组分配的空间 int a[10]{1,2,3,4,5,6,7,8,9,10};//分配空间 元素类型大小int4*元素个数1040byte 元素之间空间连续 数组名代表数组首元素地址;a 取的是a[0]的地址;&a 是整个数组的地址 说明: 数组首元素地址: 0号元…...
深入理解TensorFlow中的形状处理函数
摘要 在深度学习模型的构建过程中,张量(Tensor)的形状管理是一项至关重要的任务。特别是在使用TensorFlow等框架时,确保张量的形状符合预期是保证模型正确运行的基础。本文将详细介绍几个常用的形状处理函数,包括get_…...
MySQL数据库3——函数与约束
一.函数 1.字符串函数 MySQL中内置了很多字符串函数,常用的几个如下: 使用方法: SELECT 函数名(参数);注意:MySQL中的索引值即下标都是从1开始的。 2.数值函数 常见的数值函数如下: 使用方法: SELECT…...
⾃动化运维利器 Ansible-Jinja2
Ansible-Jinja2 一、Ansible Jinja2模板背景介绍二、 JinJa2 模板2.1 JinJa2 是什么2.2 JinJa2逻辑控制 三、如何使用模板四、实例演示 按顺序食用,口味更佳 ( 1 ) ⾃动化运维利器Ansible-基础 ( 2 ) ⾃动化运维利器 Ansible-Playbook ( 3 ) ⾃动化运维利器 Ansible…...
博客文章怎么设计分类与标签
首发地址(欢迎大家访问):博客文章怎么设计分类与标签 新网站基本上算是迁移完了,迁移之后在写文章的过程中,发现个人的文章分类和标签做的太混乱了,分类做的像标签,标签也不是特别的丰富&#x…...
FastDDS之DataSharing
目录 原理说明限制条件配置Data-Sharing delivery kindData-sharing domain identifiers最大domain identifiers数量共享内存目录 DataReader和DataWriter的history耦合DataAck阻塞复用 本文详细记录Fast DDS中Data Sharing的实现原理和代码分析。 DataSharing的概念࿱…...
计算机网络在线测试-概述
单项选择题 第1题 数据通信中,数据传输速率(比特率,bps)是指每秒钟发送的()。 二进制位数 (我的答案) 符号数 字节数 码元数 第2题 一座大楼内的一个计算机网络系统…...
【MySQL】数据库必考知识点:查询操作全面详解与深度解剖
前言:本节内容讲述基本查询, 基本查询要分为两篇文章进行讲解。 本篇文章主要讲解的是表内删除数据、查询结果进行插入、聚合统计、分组聚合统计。 如果想要学习对应知识的可以观看哦。 ps:本篇内容友友们只要会创建表了就可以看起来了哦!&am…...
鲸鱼机器人和乐高机器人的比较
鲸鱼机器人和乐高机器人各有其独特的优势和特点,家长在选择时可以根据孩子的年龄、兴趣、经济能力等因素进行综合考虑,选择最适合孩子的教育机器人产品。 优势 鲸鱼机器人 1)价格亲民:鲸鱼机器人的产品价格相对乐高更为亲民&…...
游戏引擎学习第15天
视频参考:https://www.bilibili.com/video/BV1mbUBY7E24 关于游戏中文件输入输出(IO)操作的讨论。主要分为两类: 只读资产的加载 这部分主要涉及游戏中用于展示和运行的只读资源,例如音乐、音效、美术资源(如 3D 模型和…...
详解模版类pair
目录 一、pair简介 二、 pair的创建 三、pair的赋值 四、pair的排序 (1)用sort默认排序 (2)用sort中的自定义排序进行排序 五、pair的交换操作 一、pair简介 pair是一个模版类,可以存储两个值的键值对.first以…...
AI驱动的桌面笔记应用Reor
网友 竹林风 说,已经成功的用 mxbai-embed-large 映射到 text-embedding-ada-002,并测试成功了。不愧是爱折腾的人,老苏还没时间试,因为又找到了另一个支持 AI 的桌面版笔记 Reor Reor 简介 什么是 Reor ? Reor 是一款由人工智…...
搜维尔科技:使用sensglove触觉反馈手套进行虚拟拆装操作
使用sensglove触觉反馈手套进行虚拟拆装操作 搜维尔科技:使用sensglove触觉反馈手套进行虚拟拆装操作...
深入理解电子邮件安全:SPF、DKIM 和 DMARC 完全指南
引言 在当今数字时代,电子邮件已经成为我们日常通信中不可或缺的一部分。然而,随之而来的安全问题也日益突出。邮件欺诈、钓鱼攻击和垃圾邮件等威胁不断增加,这促使了多种邮件安全验证机制的出现。本文将深入探讨三个最重要的邮件安全协议&a…...
SpringBoot-17-MyBatis动态SQL标签之常用标签
文章目录 1 代码1.1 实体User.java1.2 接口UserMapper.java1.3 映射UserMapper.xml1.3.1 标签if1.3.2 标签if和where1.3.3 标签choose和when和otherwise1.4 UserController.java2 常用动态SQL标签2.1 标签set2.1.1 UserMapper.java2.1.2 UserMapper.xml2.1.3 UserController.ja…...
Unity3D中Gfx.WaitForPresent优化方案
前言 在Unity中,Gfx.WaitForPresent占用CPU过高通常表示主线程在等待GPU完成渲染(即CPU被阻塞),这表明存在GPU瓶颈或垂直同步/帧率设置问题。以下是系统的优化方案: 对惹,这里有一个游戏开发交流小组&…...
STM32F4基本定时器使用和原理详解
STM32F4基本定时器使用和原理详解 前言如何确定定时器挂载在哪条时钟线上配置及使用方法参数配置PrescalerCounter ModeCounter Periodauto-reload preloadTrigger Event Selection 中断配置生成的代码及使用方法初始化代码基本定时器触发DCA或者ADC的代码讲解中断代码定时启动…...
渲染学进阶内容——模型
最近在写模组的时候发现渲染器里面离不开模型的定义,在渲染的第二篇文章中简单的讲解了一下关于模型部分的内容,其实不管是方块还是方块实体,都离不开模型的内容 🧱 一、CubeListBuilder 功能解析 CubeListBuilder 是 Minecraft Java 版模型系统的核心构建器,用于动态创…...
ETLCloud可能遇到的问题有哪些?常见坑位解析
数据集成平台ETLCloud,主要用于支持数据的抽取(Extract)、转换(Transform)和加载(Load)过程。提供了一个简洁直观的界面,以便用户可以在不同的数据源之间轻松地进行数据迁移和转换。…...
深入浅出深度学习基础:从感知机到全连接神经网络的核心原理与应用
文章目录 前言一、感知机 (Perceptron)1.1 基础介绍1.1.1 感知机是什么?1.1.2 感知机的工作原理 1.2 感知机的简单应用:基本逻辑门1.2.1 逻辑与 (Logic AND)1.2.2 逻辑或 (Logic OR)1.2.3 逻辑与非 (Logic NAND) 1.3 感知机的实现1.3.1 简单实现 (基于阈…...
MySQL 主从同步异常处理
阅读原文:https://www.xiaozaoshu.top/articles/mysql-m-s-update-pk MySQL 做双主,遇到的这个错误: Could not execute Update_rows event on table ... Error_code: 1032是 MySQL 主从复制时的经典错误之一,通常表示ÿ…...
macOS 终端智能代理检测
🧠 终端智能代理检测:自动判断是否需要设置代理访问 GitHub 在开发中,使用 GitHub 是非常常见的需求。但有时候我们会发现某些命令失败、插件无法更新,例如: fatal: unable to access https://github.com/ohmyzsh/oh…...
LangChain 中的文档加载器(Loader)与文本切分器(Splitter)详解《二》
🧠 LangChain 中 TextSplitter 的使用详解:从基础到进阶(附代码) 一、前言 在处理大规模文本数据时,特别是在构建知识库或进行大模型训练与推理时,文本切分(Text Splitting) 是一个…...
如何把工业通信协议转换成http websocket
1.现状 工业通信协议多数工作在边缘设备上,比如:PLC、IOT盒子等。上层业务系统需要根据不同的工业协议做对应开发,当设备上用的是modbus从站时,采集设备数据需要开发modbus主站;当设备上用的是西门子PN协议时…...
