当前位置: 首页 > news >正文

GRU(门控循环单元)详解

1️⃣ GRU介绍

前面介绍的LSTM可以有效缓解RNN的梯度消失问题,但是其内部结构比较复杂,因此衍生出了更加简化的GRU。GRU把输入门遗忘门整合成一个更新门,并且合并了细胞状态和隐藏状态。于2014年被提出


2️⃣ 原理介绍

GRU的结构和最简单的RNN是一样的。当前输入为 x t x_t xt,上一个节点传递下来的隐层状态为 h t − 1 h_{t-1} ht1,这个隐层状态包含了之前节点的相关信息。根据 x t x_t xt h t − 1 h_{t-1} ht1,GRU会得到当前时间步的输出 y t y_t yt和传递给下一个节点的隐层状态 h t h_t ht,实际上 y t y_t yt就是等于 h t h_t ht
在这里插入图片描述
下面介绍详细的原理,下图展示了GRU的详细结构:
在这里插入图片描述

第一步,计算重置门,它的参数是 W r W_r Wr用于控制之前的记忆需要保留多少。该门的输入是前一个隐层状态 h t − 1 h_{t-1} ht1以及当前时间步的输入 x t x_t xt,输出为 r t r_t rt,在0到1之间,:
r t = σ ( W r ⋅ [ h t − 1 , x t ] ) r_{t}=\sigma\left(W_{r}\cdot[h_{t-1},x_{t}]\right) rt=σ(Wr[ht1,xt])其中, σ \sigma σ表示sigmoid激活函数

第二步,我们来看更新门,它的参数为 W z W_z Wz,它将LSTM中的输入门和遗忘门结合,决定当前时间步应该保留多少以前的记忆,多少新信息应该加入。该门的输入也是前一个隐层状态 h t − 1 h_{t-1} ht1以及当前时间步的输入 x t x_t xt,省略了偏置参数 b b b,输出为 z t ,在 0 到 1 之间, z_t,在0到1之间, zt,在01之间,公式具体表达为:
z t = σ ( W z ⋅ [ h t − 1 , x t ] ) z_{t}=\sigma\left(W_{z}\cdot[h_{t-1},x_{t}]\right) zt=σ(Wz[ht1,xt])其中, σ \sigma σ表示sigmoid激活函数

第三步,计算输入值,输入值由前一个隐层状态 h t − 1 h_{t-1} ht1,当前的 x t x_t xt以及重置门 r t r_t rt得到。 r t ∗ h t − 1 r_{t}*h_{t-1} rtht1可以理解为之前的记忆保留多少来学习新的内容 x t x_t xt h ~ t \tilde{h}_{t} h~t相当于利用之前的记忆对新的内容理解的部分
h ~ t = tanh ⁡ ( W ⋅ [ r t ∗ h t − 1 , x t ] ) \tilde{h}_{t}=\operatorname{tanh}\left(W\cdot[r_{t}*h_{t-1},x_{t}]\right) h~t=tanh(W[rtht1,xt])

第四步,计算当前输出 h t h_t ht,由两部分,一部分是之前信息的影响 h t − 1 h_{t-1} ht1,后一部分是当前输入的影响 h ~ t \tilde{h}_t h~t z t z_{t} zt是更新门的输出,取值在0-1之间。给 h t − 1 h_{t-1} ht1赋予 ( 1 − z t ) (1-z_t) (1zt)权重,给 h ~ t \tilde{h}_t h~t赋予 z t z_{t} zt权重:

h t = ( 1 − z t ) ∗ h t − 1 + z t ∗ h ~ t \begin{aligned}h_t=(1-z_t)*h_{t-1}+z_t*\tilde{h}_t\end{aligned} ht=(1zt)ht1+zth~t

我前面写的这篇文章中介绍了为什么RNN会有梯度消失和爆炸:点这里查看

主要原因是反向传播时,梯度中有这一部分:
∏ j = k + 1 3 ∂ s j ∂ s j − 1 = ∏ j = k + 1 3 t a n h ′ W \prod_{j=k+1}^3\frac{\partial s_j}{\partial s_{j-1}}=\prod_{j=k+1}^3tanh^{'}W j=k+13sj1sj=j=k+13tanhW

那么GRU如何缓解RNN的梯度消失问题呢?

在GRU里,隐层的输出换了个符号,从 s s s变成 h h h了。因此我们来分析一下 ∂ h t ∂ h t − 1 \frac{\partial h_t}{\partial h_{t-1}} ht1ht。 我们可以得到:
∂ h t ∂ h t − 1 = ( 1 − z t ) + … \frac{\partial h_t}{\partial h_{t-1}}=(1-z_t)+\ldots ht1ht=(1zt)+

因此我们可以通过控制更新门的输出 z t z_t zt来控制梯度,以缓解梯度消失问题


3️⃣ 总结

  • GRU和LSTM对比:
    在这里插入图片描述

  • GRU通过控制更新门的输出 z t z_t zt来控制梯度,以缓解梯度消失问题


4️⃣ 参考

  • Pytorch_LSTM与GRU
  • 白话机器学习-从RNN、LSTM到GRU

相关文章:

GRU(门控循环单元)详解

1️⃣ GRU介绍 前面介绍的LSTM可以有效缓解RNN的梯度消失问题,但是其内部结构比较复杂,因此衍生出了更加简化的GRU。GRU把输入门和遗忘门整合成一个更新门,并且合并了细胞状态和隐藏状态。于2014年被提出 2️⃣ 原理介绍 GRU的结构和最简单…...

【代码随想录|回溯算法排列问题】

491.非减子序列 题目链接. - 力扣(LeetCode) 这里和子集问题||很像,但是这里要的是非递减的子序列,要按照给的数组的顺序来进行排序,就是如果我给定的数组是[4,4,3,2,1],如果用子集||的做法先进行排序得到…...

Azure Kubernetes Service (AKS)资源优化策略

针对Azure Kubernetes Service (AKS)的资源优化策略,可以从多个维度进行考虑和实施,以提升集群的性能、效率和资源利用率。以下是一些关键的优化策略: 一、 Pod资源请求和限制 设置Pod请求和限制:在YAML清单中为所有Pod设置CPU和…...

R语言 | 宽数据变成一列,保留对应的行名和列名

对应稀疏矩阵 转为 宽数据框,见 数据格式转换 | 稀疏矩阵3列还原为原始矩阵/数据框,自定义函数 df3toMatrix() 目的:比如查看鸢尾花整体的指标分布,4个指标分开,画到一个图中。每个品种画一个图。 1.数据整理&#…...

RTSP播放器EasyPlayer.js播放器在webview环境下,PC和安卓能够正常播放,IOS环境下播放器会黑屏无法播放

流媒体技术分为顺序流式传输和实时流式传输两种。顺序流式传输允许用户在下载的同时观看,而实时流式传输则允许用户实时观看内容。 流媒体播放器负责解码和呈现内容,常见的播放器包括VLC和HTML5播放器等。流媒体技术的应用场景广泛,包括娱乐…...

.NET周刊【11月第3期 2024-11-17】

国内文章 .NET 9使用Scalar替代Swagger https://www.cnblogs.com/netry/p/18543378/scalar-an-alternative-to-swagger-in-dotnet-9 .NET 9 移除了 Swashbuckle.AspNetCore,因为其维护不力,并转向 Microsoft.AspNetCore.OpenApi。除了 Swashbuckle&am…...

c语言数据22数组使用

1.1数组分配的空间 int a[10]{1,2,3,4,5,6,7,8,9,10};//分配空间 元素类型大小int4*元素个数1040byte 元素之间空间连续 数组名代表数组首元素地址;a 取的是a[0]的地址;&a 是整个数组的地址 说明: 数组首元素地址: 0号元…...

深入理解TensorFlow中的形状处理函数

摘要 在深度学习模型的构建过程中,张量(Tensor)的形状管理是一项至关重要的任务。特别是在使用TensorFlow等框架时,确保张量的形状符合预期是保证模型正确运行的基础。本文将详细介绍几个常用的形状处理函数,包括get_…...

MySQL数据库3——函数与约束

一.函数 1.字符串函数 MySQL中内置了很多字符串函数,常用的几个如下: 使用方法: SELECT 函数名(参数);注意:MySQL中的索引值即下标都是从1开始的。 2.数值函数 常见的数值函数如下: 使用方法: SELECT…...

⾃动化运维利器 Ansible-Jinja2

Ansible-Jinja2 一、Ansible Jinja2模板背景介绍二、 JinJa2 模板2.1 JinJa2 是什么2.2 JinJa2逻辑控制 三、如何使用模板四、实例演示 按顺序食用,口味更佳 ( 1 ) ⾃动化运维利器Ansible-基础 ( 2 ) ⾃动化运维利器 Ansible-Playbook ( 3 ) ⾃动化运维利器 Ansible…...

博客文章怎么设计分类与标签

首发地址(欢迎大家访问):博客文章怎么设计分类与标签 新网站基本上算是迁移完了,迁移之后在写文章的过程中,发现个人的文章分类和标签做的太混乱了,分类做的像标签,标签也不是特别的丰富&#x…...

FastDDS之DataSharing

目录 原理说明限制条件配置Data-Sharing delivery kindData-sharing domain identifiers最大domain identifiers数量共享内存目录 DataReader和DataWriter的history耦合DataAck阻塞复用 本文详细记录Fast DDS中Data Sharing的实现原理和代码分析。 DataSharing的概念&#xff1…...

计算机网络在线测试-概述

单项选择题 第1题 数据通信中,数据传输速率(比特率,bps)是指每秒钟发送的()。 二进制位数 (我的答案) 符号数 字节数 码元数 第2题 一座大楼内的一个计算机网络系统&#xf…...

【MySQL】数据库必考知识点:查询操作全面详解与深度解剖

前言:本节内容讲述基本查询, 基本查询要分为两篇文章进行讲解。 本篇文章主要讲解的是表内删除数据、查询结果进行插入、聚合统计、分组聚合统计。 如果想要学习对应知识的可以观看哦。 ps:本篇内容友友们只要会创建表了就可以看起来了哦!&am…...

鲸鱼机器人和乐高机器人的比较

鲸鱼机器人和乐高机器人各有其独特的优势和特点,家长在选择时可以根据孩子的年龄、兴趣、经济能力等因素进行综合考虑,选择最适合孩子的教育机器人产品。 优势 鲸鱼机器人 1)价格亲民:鲸鱼机器人的产品价格相对乐高更为亲民&…...

游戏引擎学习第15天

视频参考:https://www.bilibili.com/video/BV1mbUBY7E24 关于游戏中文件输入输出(IO)操作的讨论。主要分为两类: 只读资产的加载 这部分主要涉及游戏中用于展示和运行的只读资源,例如音乐、音效、美术资源(如 3D 模型和…...

详解模版类pair

目录 一、pair简介 二、 pair的创建 三、pair的赋值 四、pair的排序 (1)用sort默认排序 (2)用sort中的自定义排序进行排序 五、pair的交换操作 一、pair简介 pair是一个模版类,可以存储两个值的键值对.first以…...

AI驱动的桌面笔记应用Reor

网友 竹林风 说,已经成功的用 mxbai-embed-large 映射到 text-embedding-ada-002,并测试成功了。不愧是爱折腾的人,老苏还没时间试,因为又找到了另一个支持 AI 的桌面版笔记 Reor Reor 简介 什么是 Reor ? Reor 是一款由人工智…...

搜维尔科技:使用sensglove触觉反馈手套进行虚拟拆装操作

使用sensglove触觉反馈手套进行虚拟拆装操作 搜维尔科技:使用sensglove触觉反馈手套进行虚拟拆装操作...

深入理解电子邮件安全:SPF、DKIM 和 DMARC 完全指南

引言 在当今数字时代,电子邮件已经成为我们日常通信中不可或缺的一部分。然而,随之而来的安全问题也日益突出。邮件欺诈、钓鱼攻击和垃圾邮件等威胁不断增加,这促使了多种邮件安全验证机制的出现。本文将深入探讨三个最重要的邮件安全协议&a…...

Appium+python自动化(十六)- ADB命令

简介 Android 调试桥(adb)是多种用途的工具,该工具可以帮助你你管理设备或模拟器 的状态。 adb ( Android Debug Bridge)是一个通用命令行工具,其允许您与模拟器实例或连接的 Android 设备进行通信。它可为各种设备操作提供便利,如安装和调试…...

uni-app学习笔记二十二---使用vite.config.js全局导入常用依赖

在前面的练习中,每个页面需要使用ref,onShow等生命周期钩子函数时都需要像下面这样导入 import {onMounted, ref} from "vue" 如果不想每个页面都导入,需要使用node.js命令npm安装unplugin-auto-import npm install unplugin-au…...

el-switch文字内置

el-switch文字内置 效果 vue <div style"color:#ffffff;font-size:14px;float:left;margin-bottom:5px;margin-right:5px;">自动加载</div> <el-switch v-model"value" active-color"#3E99FB" inactive-color"#DCDFE6"…...

学习STC51单片机31(芯片为STC89C52RCRC)OLED显示屏1

每日一言 生活的美好&#xff0c;总是藏在那些你咬牙坚持的日子里。 硬件&#xff1a;OLED 以后要用到OLED的时候找到这个文件 OLED的设备地址 SSD1306"SSD" 是品牌缩写&#xff0c;"1306" 是产品编号。 驱动 OLED 屏幕的 IIC 总线数据传输格式 示意图 …...

NFT模式:数字资产确权与链游经济系统构建

NFT模式&#xff1a;数字资产确权与链游经济系统构建 ——从技术架构到可持续生态的范式革命 一、确权技术革新&#xff1a;构建可信数字资产基石 1. 区块链底层架构的进化 跨链互操作协议&#xff1a;基于LayerZero协议实现以太坊、Solana等公链资产互通&#xff0c;通过零知…...

IT供电系统绝缘监测及故障定位解决方案

随着新能源的快速发展&#xff0c;光伏电站、储能系统及充电设备已广泛应用于现代能源网络。在光伏领域&#xff0c;IT供电系统凭借其持续供电性好、安全性高等优势成为光伏首选&#xff0c;但在长期运行中&#xff0c;例如老化、潮湿、隐裂、机械损伤等问题会影响光伏板绝缘层…...

AI书签管理工具开发全记录(十九):嵌入资源处理

1.前言 &#x1f4dd; 在上一篇文章中&#xff0c;我们完成了书签的导入导出功能。本篇文章我们研究如何处理嵌入资源&#xff0c;方便后续将资源打包到一个可执行文件中。 2.embed介绍 &#x1f3af; Go 1.16 引入了革命性的 embed 包&#xff0c;彻底改变了静态资源管理的…...

dify打造数据可视化图表

一、概述 在日常工作和学习中&#xff0c;我们经常需要和数据打交道。无论是分析报告、项目展示&#xff0c;还是简单的数据洞察&#xff0c;一个清晰直观的图表&#xff0c;往往能胜过千言万语。 一款能让数据可视化变得超级简单的 MCP Server&#xff0c;由蚂蚁集团 AntV 团队…...

人机融合智能 | “人智交互”跨学科新领域

本文系统地提出基于“以人为中心AI(HCAI)”理念的人-人工智能交互(人智交互)这一跨学科新领域及框架,定义人智交互领域的理念、基本理论和关键问题、方法、开发流程和参与团队等,阐述提出人智交互新领域的意义。然后,提出人智交互研究的三种新范式取向以及它们的意义。最后,总结…...

PostgreSQL——环境搭建

一、Linux # 安装 PostgreSQL 15 仓库 sudo dnf install -y https://download.postgresql.org/pub/repos/yum/reporpms/EL-$(rpm -E %{rhel})-x86_64/pgdg-redhat-repo-latest.noarch.rpm# 安装之前先确认是否已经存在PostgreSQL rpm -qa | grep postgres# 如果存在&#xff0…...