当前位置: 首页 > news >正文

MATLAB神经网络(五)——R-CNN视觉检测

5.1 目标分类、检测与分割

        在计算机视觉领域,目标分类、检测与分割是常用计数。三者的联系与区分又在哪呢?目标分类是解决图像中的物体是什么的问题;目标检测是解决图像中的物体是什么,在哪里的问题;目标分割时将目标和背景分离出来,找出目标的轮廓线。

        衡量目标检测性能优劣的指标一方面要体现分类特性(准确度、精确率、召回率),另一方面要体现其定位特征,对于定位特征,通常用IoU来评价。交并比用来计算两个边界框交集和并集和并集之比,它衡量了两个边界框的重叠程度,如果重叠程度越高,检测越准确

5.2 R-CNN目标检测算法原理与实现

        R-CNN利用候选区域+卷积神经网络的方法,解决了图像中的定位问题,对于小规模数据集的问题,R-CNN利用AlexNet在ImageNet上预训练好的模型,基于迁移学习的原理,对参数进行微调。

     

        第一步:首先会有很多候选框区域,这些区域是由图像分割的方法得到的原始区域然后进行合并,得到的一个层次化的区域,这些区域内就可能存在需要的内容

        第二步:因为使用的为AlexNet,上一章我们很详细的说明了。将我们的候选区域压缩到  227*227,输入到神经网络中获得4096维的矩阵,每个候选区域都有一个矩阵。

        第三步:判断类别,候选框个数*4096特征与20哥SVM支持向量机组成的全职矩阵 4096*20,获得  2000 * 20维矩阵,分别对上述2000×20维矩阵中每一列即每一类进行非极大值抑制剔除重叠建议框,得到该列即该类中得分最高的一些建议框。

         SVM是线性分类器,相当于绘出一条线,让两组不同的数据距离他的距离最远。

        最后修正这个框,得到得分最高的框

  基于上面的过程,下面给出步骤:

        首先通过Image Labeler App构建R-CNN目标检测器,并导入图片

        并利用标签对图像进行标志

        标签完成后导出到工作空间内

trainingdate=objectDetectorTrainingData(gTruth);

        objectDetectorTrainingData函数可以将我们上面导出的图片转换为用于训练的数据,就可以导入网络进行使用了,给出完整代码如下:

%%  进行数据类型的转化
trainingdate=objectDetectorTrainingData(gTruth);
%%  导入网络
net=alexnet;
%%  设置训练策略参数并进行训练
% 设置训练策略参数
options = trainingOptions('sgdm', ...'MiniBatchSize', 128, ...'InitialLearnRate', 1e-3, ...'LearnRateSchedule', 'piecewise', ...'LearnRateDropFactor', 0.1, ...'LearnRateDropPeriod', 100, ...'MaxEpochs',10, ...'Verbose', true);% 训练网络.rcnn = trainRCNNObjectDetector(trainingdate, net, options, ...'NegativeOverlapRange', [0 0.3], 'PositiveOverlapRange',[0.5 1]) ;%%  显示测试结果
% 读取数据
I = imread('E:\MATLAB_DeepLearning\chapter_9\stop_sign_ch\slowtest.jpg');
% 用检测器测试
[bboxes,scores] = detect(rcnn,I);
% 标注测试结果并显示
I = insertObjectAnnotation(I,'rectangle',bboxes,scores);
figure
imshow(I)

效果如下:

111                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           

相关文章:

MATLAB神经网络(五)——R-CNN视觉检测

5.1 目标分类、检测与分割 在计算机视觉领域,目标分类、检测与分割是常用计数。三者的联系与区分又在哪呢?目标分类是解决图像中的物体是什么的问题;目标检测是解决图像中的物体是什么,在哪里的问题;目标分割时将目标和…...

mock.js:定义、应用场景、安装、配置、使用

前言:什么是mock.js? 作为一个前端程序员,没有mockjs你不感觉很被动吗?你不感觉你的命脉被后端那个男人掌握了吗?所以,我命由我不由天!学学mock.js吧! mock.js 是一个用于生成随机…...

【GAT】 代码详解 (1) 运行方法【pytorch】可运行版本

GRAPH ATTENTION NETWORKS 代码详解 前言0.引言1. 环境配置2. 代码的运行2.1 报错处理2.2 运行结果展示 3.总结 前言 在前文中,我们已经深入探讨了图卷积神经网络和图注意力网络的理论基础。还没看的同学点这里补习下。接下来,将开启一个新的阶段&#…...

Transformer中的Self-Attention机制如何自然地适应于目标检测任务

Transformer中的Self-Attention机制如何自然地适应于目标检测任务: 特征图的降维与重塑 首先,Backbone(如ResNet、VGG等)会输出一个特征图,这个特征图通常具有较高的通道数、高度和宽度(例如CHW&#xff…...

2411rust,1.75.0

原文 Rust团队很高兴地声明推出Rust的新版本1.75.0. 如果你rustup安装了以前版本的Rust,你可如下取1.75.0: $ rustup update stable1.75.0稳定版中的功能 async fn和特征中的返回位置impl Trait. 指针字节偏移API 原始指针(*const T和*mutT)过去主要支持,T为单位的操作.如…...

远程办公新宠:分享8款知识共享软件

远程办公模式下,知识共享软件成为了团队协作和沟通的重要工具。以下是8款备受推崇的知识共享软件: 1、HelpLook AI知识库 简介:HelpLook是一款快速搭建AI知识库的系统,具备强大功能,如快速精准的知识检索、灵活定制的…...

3.9MayBeSomeAssembly

就是先从数组里,乘4得到正确地址 32(&s3),s3是基址,32是偏移量,就是先从数组里取出数到临时寄存器,然后再在临时寄存器上加上变量,最后再把临时寄存器上的变量存到数组里,偏移量&#xff0…...

i春秋-签到题

练习平台地址 竞赛中心 题目描述 题目内容 点击GUESS后会有辨识细菌的选择题 全部完成后会有弹窗提示 输入nickname后提示获得flag F12检查 元素中没有发现信息 检查后发现flag在控制台中 flag flag{663a5c95-3050-4c3a-bb6e-bc4f2fb6c32e} 注意事项 flag不一定要在元素中找&a…...

TypeScript 中扩展现有模块的用法

declare module 是 TypeScript 中用于扩展现有模块的特性。它允许开发者在已有模块的基础上,添加新的功能(比如扩展接口、添加类型声明等)。通过 declare module,可以将额外的声明合并到原模块中。以下是用法详解: 用…...

【报错记录】解决Termux中pulseaudio启动报错,报:E: [pulseaudio] main.c: Daemon startup failed.

前言 在尝试使用Termux-X11启动Minecraft过程中,不知道怎么回事原本好好的pulseaudio居然无法启动了,一直在报: E: [pulseaudio] main.c: Daemon startup failed. 重装了好几次也没用解决方案如下。 排除重复启动 如果pulseaudio之前已经…...

Java list

在 Java 中,链表(LinkedList)是一个非常重要的数据结构,它可以动态地插入和删除元素,因此比数组更灵活。Java 提供了 LinkedList 类,该类实现了 List 接口,并且是基于双向链表实现的&#xff0c…...

MAC借助终端上传jar包到云服务器

前提:保证工程本地已打包完成:图中路径即为项目的target目录下已准备好的jar包 第一步:打开终端(先不要连接自己的服务器),输入下面的上传命令: scp /path/to/local/app.jar username192.168.1…...

对原jar包解压后修改原class文件后重新打包为jar

文章目录 背景三种修改方式1.POM中移除原jar中依赖的历史版本2.原jar它不使用pom依赖而是直接放在源码中再编译使用JarEditor 插件对源码进行修改(推荐)使用java-decompiler反编译后修改源码覆盖原class(不好用-不推荐直接跳过)提醒 参考资料-推荐阅读拓…...

YY币支付系统改源码(改良版本)

Nginx :1.20.1(版本都可以) MySQL:5.6.50(兼容该版本其他不知道) 简单优化服务器(可不安装,看要求) PHP安装扩展名称:fileinfo | opcache | imagemagick …...

【Swift】类型标注、类型安全和类型推断

文章目录 类型标注类型安全和类型推断什么是类型安全和类型推断为什么说Swift是一门安全语言类型安全带来的好处 类型标注 当你声明常量或者变量的时候可以加上类型标注(type annotation),说明常量或者变量中要存储的值的类型。如果要添加类…...

06 —— Webpack优化—压缩过程

css代码提取后想要压缩 —— 使用css-minimizer-webpack-plugin插件 下载 css-minimizer-webpack-plugin 本地软件包 npm install css-minimizer-webpack-plugin --save-dev 配置 webpack.config.js 让webpack拥有该功能 const CssMinimizerPlugin require(css-minimizer-…...

uniapp页面样式和布局和nvue教程详解

uniapp页面样式和布局和nvue教程 尺寸单位 uni-app 支持的通用 css 单位包括 px、rpx px 即屏幕像素。rpx 即响应式px,一种根据屏幕宽度自适应的动态单位。以750宽的屏幕为基准,750rpx恰好为屏幕宽度。屏幕变宽,rpx 实际显示效果会等比放大…...

单条推理转批量推理prompt

为了将单条推理程序改为批量推理程序,并实现您的要求,我们需要进行以下步骤: 输入的图片和视频都是随机从视频文件夹、图片文件夹挑选,组成输入对: 需要编写一个函数来读取指定文件夹中的所有图片和视频文件。 使用随…...

网络安全审计概述与分类

目录 网络安全审计概述等保五个级别对审计要求网络安全审计系统组成网络安全审计系统类型 网络安全审计概述 4A分别是认证、授权、账号、审计 网络安全审计是指对网络信息系统的安全相关活动信息进行获取、记录、存储分析和利用的工作。 网络安全审计的作用在于建立“事后”…...

【已解决】“EndNote could not connect to the online sync service”问题的解决

本人不止一次在使用EndNote软件时遇到过“EndNote could not connect to the online sync service”这个问题。 过去遇到这个问题都是用这个方法来解决: 这个方法虽然能解决,但工程量太大,每次做完得歇半天身体才能缓过来。 后来再遇到该问…...

变量 varablie 声明- Rust 变量 let mut 声明与 C/C++ 变量声明对比分析

一、变量声明设计:let 与 mut 的哲学解析 Rust 采用 let 声明变量并通过 mut 显式标记可变性,这种设计体现了语言的核心哲学。以下是深度解析: 1.1 设计理念剖析 安全优先原则:默认不可变强制开发者明确声明意图 let x 5; …...

Chapter03-Authentication vulnerabilities

文章目录 1. 身份验证简介1.1 What is authentication1.2 difference between authentication and authorization1.3 身份验证机制失效的原因1.4 身份验证机制失效的影响 2. 基于登录功能的漏洞2.1 密码爆破2.2 用户名枚举2.3 有缺陷的暴力破解防护2.3.1 如果用户登录尝试失败次…...

stm32G473的flash模式是单bank还是双bank?

今天突然有人stm32G473的flash模式是单bank还是双bank?由于时间太久,我真忘记了。搜搜发现,还真有人和我一样。见下面的链接:https://shequ.stmicroelectronics.cn/forum.php?modviewthread&tid644563 根据STM32G4系列参考手…...

【开发技术】.Net使用FFmpeg视频特定帧上绘制内容

目录 一、目的 二、解决方案 2.1 什么是FFmpeg 2.2 FFmpeg主要功能 2.3 使用Xabe.FFmpeg调用FFmpeg功能 2.4 使用 FFmpeg 的 drawbox 滤镜来绘制 ROI 三、总结 一、目的 当前市场上有很多目标检测智能识别的相关算法,当前调用一个医疗行业的AI识别算法后返回…...

10-Oracle 23 ai Vector Search 概述和参数

一、Oracle AI Vector Search 概述 企业和个人都在尝试各种AI,使用客户端或是内部自己搭建集成大模型的终端,加速与大型语言模型(LLM)的结合,同时使用检索增强生成(Retrieval Augmented Generation &#…...

免费数学几何作图web平台

光锐软件免费数学工具,maths,数学制图,数学作图,几何作图,几何,AR开发,AR教育,增强现实,软件公司,XR,MR,VR,虚拟仿真,虚拟现实,混合现实,教育科技产品,职业模拟培训,高保真VR场景,结构互动课件,元宇宙http://xaglare.c…...

iview框架主题色的应用

1.下载 less要使用3.0.0以下的版本 npm install less2.7.3 npm install less-loader4.0.52./src/config/theme.js文件 module.exports {yellow: {theme-color: #FDCE04},blue: {theme-color: #547CE7} }在sass中使用theme配置的颜色主题,无需引入,直接可…...

微服务通信安全:深入解析mTLS的原理与实践

🔥「炎码工坊」技术弹药已装填! 点击关注 → 解锁工业级干货【工具实测|项目避坑|源码燃烧指南】 一、引言:微服务时代的通信安全挑战 随着云原生和微服务架构的普及,服务间的通信安全成为系统设计的核心议题。传统的单体架构中&…...

云安全与网络安全:核心区别与协同作用解析

在数字化转型的浪潮中,云安全与网络安全作为信息安全的两大支柱,常被混淆但本质不同。本文将从概念、责任分工、技术手段、威胁类型等维度深入解析两者的差异,并探讨它们的协同作用。 一、核心区别 定义与范围 网络安全:聚焦于保…...

鸿蒙HarmonyOS 5军旗小游戏实现指南

1. 项目概述 本军旗小游戏基于鸿蒙HarmonyOS 5开发,采用DevEco Studio实现,包含完整的游戏逻辑和UI界面。 2. 项目结构 /src/main/java/com/example/militarychess/├── MainAbilitySlice.java // 主界面├── GameView.java // 游戏核…...