当前位置: 首页 > news >正文

人工智能-深度学习-Torch框架-手动构建回归流程

from sklearn.datasets import make_regression
import math
import random
import torch
  • from sklearn.datasets import make_regression: 导入make_regression函数,用于生成回归数据集。

  • import math: 导入math模块,用于进行数学计算,例如向上取整。

  • import random: 导入random模块,用于随机打乱数据集。

  • import torch: 导入torch库,用于张量操作和神经网络训练。

构建数据集

def build_data():'''构建数据集'''noise = 14.6#噪声n_sample = 1000#样本数量X,y,coef = make_regression(n_samples=n_sample,n_features=4,coef=True)X = torch.tensor(X,dtype=torch.float64,requires_grad=True)y = torch.tensor(y,dtype=torch.float64,requires_grad=True)return X,y,coef
  • def build_data():: 定义一个名为build_data的函数,用于构建数据集。

  • noise = 14.6: 设置噪声水平为14.6,用于生成带有噪声的数据。

  • n_sample = 1000: 设置样本数量为1000,用于生成1000个样本。

  • X, y, coef = make_regression(n_samples=n_sample, n_features=4, coef=True): 使用make_regression生成回归数据集,包含1000个样本和4个特征,并返回真实系数。

  • X = torch.tensor(X, dtype=torch.float64, requires_grad=True): 将生成的特征矩阵X转换为PyTorch张量,数据类型为torch.float64,并设置requires_grad=True以启用梯度计算。

  • y = torch.tensor(y, dtype=torch.float64, requires_grad=True): 将生成的目标向量y转换为PyTorch张量,数据类型为torch.float64,并设置requires_grad=True以启用梯度计算。

  • return X, y, coef: 返回特征矩阵X、目标向量y和真实系数coef

构建数据加载器

def data_loader(x,y):'''数据加载器'''#配置参数batch_size = 16#一个批次的数量n_sample = x.shape[0]#len(x)长度n_batches = math.ceil(n_sample/batch_size)#一轮的训练次数index = [i for i in range(n_sample)]random.shuffle(index)for i in range(0,n_batches):indexs = index[i*batch_size:min((i+1)*batch_size,n_sample)]yield x[indexs],y[indexs]
  • def data_loader(x, y):: 定义一个名为data_loader的函数,用于加载数据。

  • batch_size = 16: 设置每个批次的样本数量为16,用于控制每次训练的样本数量。

  • n_sample = x.shape[0]: 获取样本数量,用于计算批次数量。

  • n_batches = math.ceil(n_sample / batch_size): 计算每轮的批次数量,使用math.ceil向上取整,确保所有样本都能被处理。

  • index = [i for i in range(n_sample)]: 创建一个包含所有样本索引的列表,用于随机打乱样本顺序。

  • random.shuffle(index): 打乱样本索引,以随机化样本顺序,避免训练过程中的顺序偏差。

  • for i in range(0, n_batches):: 遍历每个批次,确保每个批次都能被处理。

  • indexs = index[i * batch_size:min((i + 1) * batch_size, n_sample)]: 获取当前批次的索引,确保最后一个批次也能被处理。

  • yield x[indexs], y[indexs]: 返回当前批次的特征矩阵和目标向量,使用yield生成一个生成器,用于按需加载数据。

构建模型函数

def myregreser(x,w,b):return x@w+b#一个容器中装着的是每一条样本数据的预测值

x@w+b  跟  y = x*w+b差不多,无需多言哈

  • def myregreser(x, w, b):: 定义一个名为myregreser的函数,用于计算线性回归模型的预测值。

  • return x @ w + b: 返回预测值,使用矩阵乘法@计算xw的乘积,然后加上偏置b,实现线性回归模型.

构建损失函数

def MSE(y_pred,y_true):return torch.mean((y_pred-y_true)**2)
  • def MSE(y_pred, y_true):: 定义一个名为MSE的函数,用于计算均方误差(MSE)损失。

  • return torch.mean((y_pred - y_true) ** 2): 返回预测值和真实值之间的均方误差,用于衡量模型的预测精度。

把参数初始化

def  initialize(n_featrue):torch.manual_seed(666)w = torch.randn(n_featrue,requires_grad=True,dtype=torch.float64)# print(w)b = torch.tensor(14.5,requires_grad=True,dtype=torch.float64)return w,b
  • def initialize(n_feature):: 定义一个名为initialize的函数,用于初始化模型参数。

  • torch.manual_seed(666): 设置随机种子为666,以确保结果可重复,避免随机性带来的不确定性。

  • w = torch.randn(n_feature): 使用随机值初始化权重w,确保模型初始状态具有一定的随机性。

  • b = torch.tensor(14.5, requires_grad=True, dtype=torch.float64): 初始化偏置b,并设置requires_grad=True以启用梯度计算,确保偏置可以被优化。

  • return w, b: 返回初始化的权重和偏置。

构建梯度下降函数

def optim_step(w,b,dw,db,lr):
#更新梯度,朝着梯度下降的方向去更新梯度w.data = w.data-lr*dw.datab.data = b,data-lr*db.data
  • def optim_step(w, b, dw, db, lr):: 定义一个名为optim_step的函数,用于更新模型参数。

  • w.data = w.data - lr * dw.data: 更新权重w,沿着梯度下降的方向,使用学习率lr控制更新的步长。

  • b.data = b.data - lr * db.data: 更新偏置b,沿着梯度下降的方向,使用学习率lr控制更新的步长。

使用上面构建的函数进行实战训练

def train():#生成数据x,y,coef = build_data()#初始化参数w,b = initialize(x.shape[1])#定义训练参数lr = 0.01epoch = 100for i in range(epoch):loss_e = 0count = 0for batch_x,batch_y_true in data_loader(x,y):y_bacth_pred = myregreser(batch_x,w,b)loss = MSE(y_bacth_pred,batch_y_true)loss_e+=losscount+=1#梯度清零if w.grad is not None:w.data.zero_()if b.grad is not None:b.data.zero_()#反向传播(梯度计算)loss.backward()#梯度更行optim_step(w,b,w.grad,b.grad,lr)print(f'epoch:{i},loss:{loss_e/count}')return w,b,coef
if __name__=='__main__':w,b,coef = train()print(w,b)print(coef)print(torch.allclose(w,torch.tensor(coef)))
  • def train():: 定义一个名为train的函数,用于训练模型。

  • x, y, coef = build_data(): 生成数据集,获取特征矩阵x、目标向量y和真实系数coef

  • w, b = initialize(x.shape[1]): 初始化模型参数,获取初始化的权重w和偏置b

  • lr = 0.01: 设置学习率为0.01,控制参数更新的步长。

  • epoch = 100: 设置训练轮数为100,控制训练的迭代次数。

  • for i in range(epoch):: 外层循环,遍历每个训练轮,确保模型在多个轮次中进行训练。

  • loss_e = 0: 初始化每轮的总损失为0,用于累加每个批次的损失。

  • count = 0: 初始化批次计数为0,用于计算每轮的平均损失。

  • for batch_x, batch_y_true in data_loader(x, y):: 内层循环,遍历每个批次的数据,确保每个批次都能被处理。

  • y_batch_pred = myregreser(batch_x, w, b): 计算预测值,使用当前的权重和偏置进行预测。

  • loss = MSE(y_batch_pred, batch_y_true): 计算损失,使用均方误差衡量预测值和真实值之间的差异。

  • loss_e += loss: 累加损失,用于计算每轮的总损失。

  • count += 1: 计数批次数量,用于计算每轮的平均损失。

  • if w.grad is not None:: 检查权重w的梯度是否存在,确保梯度已经计算。

  • w.grad.zero_(): 清零权重w的梯度,避免梯度累积。

  • if b.grad is not None:: 检查偏置b的梯度是否存在,确保梯度已经计算。

  • b.grad.zero_(): 清零偏置b的梯度,避免梯度累积。

  • loss.backward(): 反向传播,计算梯度,用于更新模型参数。

  • optim_step(w, b, w.grad, b.grad, lr): 更新参数,沿着梯度下降的方向更新权重和偏置。

  • print(f'epoch:{i}, loss:{loss_e / count}'): 打印每轮的平均损失,用于监控训练过程。

  • return w, b, coef: 返回训练后的权重、偏置和真实系数,用于评估模型性能。

相关文章:

人工智能-深度学习-Torch框架-手动构建回归流程

from sklearn.datasets import make_regression import math import random import torch from sklearn.datasets import make_regression: 导入make_regression函数,用于生成回归数据集。 import math: 导入math模块,用于进行数学计算,例如…...

SpringBoot源码解析(五):准备应用环境

SpringBoot源码系列文章 SpringBoot源码解析(一):SpringApplication构造方法 SpringBoot源码解析(二):引导上下文DefaultBootstrapContext SpringBoot源码解析(三):启动开始阶段 SpringBoot源码解析(四):解析应用参数args Sp…...

MySQL面试-1

InnoDB中ACID的实现 先说一下原子性是怎么实现的。 事务要么失败,要么成功,不能做一半。聪明的InnoDB,在干活儿之前,先将要做的事情记录到一个叫undo log的日志文件中,如果失败了或者主动rollback,就可以通…...

nginx配置不缓存资源

方法1 location / {index index.html index.htm;add_header Cache-Control no-cache,no-store;try_files $uri $uri/ /index.html;#include mime.types;if ($request_filename ~* .*\.(htm|html)$) {add_header Cache-Control "private, no-store, no-cache, must-revali…...

PHP导出EXCEL含合计行,设置单元格格式

PHP导出EXCEL含合计行,设置单元格格式,水平居中 垂直居中 public function exportSalary(Request $request){//水平居中 垂直居中$styleArray [alignment > [horizontal > Alignment::HORIZONTAL_CENTER,vertical > Alignment::VERTICAL_CE…...

RabbitMQ 之 死信队列

一、死信的概念 先从概念解释上搞清楚这个定义,死信,顾名思义就是无法被消费的消息,字面意思可以这样理 解,一般来说,producer 将消息投递到 broker 或者直接到 queue 里了,consumer 从 queue 取出消息进行…...

【创建型设计模式】单例模式

【创建型设计模式】单例模式 这篇博客接下来几篇都将阐述设计模式相关内容。 接下来的顺序大概是:单例模式、工厂方法模式、抽象工厂模式、建造者模式、原型模式。 一、什么是单例模式 单例模式是一种创建型设计模式,它保证一个类仅有一个实例&#…...

Charles抓包工具-笔记

摘要 概念: Charles是一款基于 HTTP 协议的代理服务器,通过成为电脑或者浏览器的代理,然后截取请求和请求结果来达到分析抓包的目的。 功能: Charles 是一个功能全面的抓包工具,适用于各种网络调试和优化场景。 它…...

Go语言使用 kafka-go 消费 Kafka 消息教程

Go语言使用 kafka-go 消费 Kafka 消息教程 在这篇教程中,我们将介绍如何使用 kafka-go 库来消费 Kafka 消息,并重点讲解 FetchMessage 和 ReadMessage 的区别,以及它们各自适用的场景。通过这篇教程,你将了解如何有效地使用 kafk…...

【论文笔记】Number it: Temporal Grounding Videos like Flipping Manga

🍎个人主页:小嗷犬的个人主页 🍊个人网站:小嗷犬的技术小站 🥭个人信条:为天地立心,为生民立命,为往圣继绝学,为万世开太平。 基本信息 标题: Number it: Temporal Grou…...

C语言菜鸟入门·关键字·int的用法

目录 1. int关键字 1.1 取值范围 1.2 符号类型 1.3 运算 1.3.1 加法运算() 1.3.2 减法运算(-) 1.3.3 乘法运算(*) 1.3.4 除法运算(/) 1.3.5 取余运算(%) 1.3.6 自增()与自减(--) 1.3.7 位运算 2. 更多关键字 1. int关键字 int 是一个关键字&#xff0…...

基于企业微信客户端设计一个文件下载与预览系统

在企业内部沟通与协作中,文件分享和管理是不可或缺的一部分。企业微信(WeCom)作为一款广泛应用于企业的沟通工具,提供了丰富的API接口和功能,帮助企业进行高效的团队协作。然而,随着文件交换和协作的日益增…...

昇思MindSpore第七课---文本解码原理

1. 文本解码原理 文本解码是将模型的输出(通常是概率分布或词汇索引)转换为可读的自然语言文本的过程。在生成文本时,常见的解码方法包括贪心解码、束搜索(BeamSearch)、随机采样等。 2 实践 2.1 配置环境 安装mindn…...

C# 数据结构之【图】C#图

1. 图的概念 图是一种重要的数据结构,用于表示节点(顶点)之间的关系。图由一组顶点和连接这些顶点的边组成。图可以是有向的(边有方向)或无向的(边没有方向),可以是加权的&#xff…...

传输控制协议(TCP)和用户数据报协议(UDP)

一、传输控制协议(TCP) 传输控制协议(Transmission Control Protocol,TCP)是一种面向连接的、可靠的、基于字节流的传输层通信协议,由 IETF 的 RFC 793 定义。 它通过三次握手建立连接,确保数…...

【Python爬虫】Scrapy框架实战---百度首页热榜新闻

如何利用Scrapy框架实战提取百度首页热榜新闻的排名、标题和链接 一、安装Scrapy库 二、创建项目(以BaiduSpider为例) scrapy startproject BaiduSpider生成每个文件的功能: 二、 创建爬虫脚本(爬虫名:news&#xff…...

采用python3.12 +django5.1 结合 RabbitMQ 和发送邮件功能,实现一个简单的告警系统 前后端分离 vue-element

一、开发环境搭建和配置 #mac环境 brew install python3.12 python3.12 --version python3.12 -m pip install --upgrade pip python3.12 -m pip install Django5.1 python3.12 -m django --version #用于检索系统信息和进程管理 python3.12 -m pip install psutil #集成 pika…...

Qt 实现网络数据报文大小端数据的收发

1.大小端数据简介 大小端(Endianness)是计算机体系结构的一个术语,它描述了多字节数据在内存中的存储顺序。以下是大小端的定义和它们的特点: 大端(Big-Endian) 在大端模式中,一个字的最高有效…...

[译]Elasticsearch Sequence ID实现思路及用途

原文地址:https://www.elastic.co/blog/elasticsearch-sequence-ids-6-0 如果 几年前,在Elastic,我们问自己一个"如果"问题,我们知道这将带来有趣的见解: "如果我们在Elasticsearch中对索引操作进行全面排序会怎样…...

Java基于SpringBoot+Vue的藏区特产销售平台

博主介绍:✌程序员徐师兄、7年大厂程序员经历。全网粉丝12w、csdn博客专家、掘金/华为云/阿里云/InfoQ等平台优质作者、专注于Java技术领域和毕业项目实战✌ 🍅文末获取源码联系🍅 👇🏻 精彩专栏推荐订阅👇…...

网络编程(Modbus进阶)

思维导图 Modbus RTU(先学一点理论) 概念 Modbus RTU 是工业自动化领域 最广泛应用的串行通信协议,由 Modicon 公司(现施耐德电气)于 1979 年推出。它以 高效率、强健性、易实现的特点成为工业控制系统的通信标准。 包…...

边缘计算医疗风险自查APP开发方案

核心目标:在便携设备(智能手表/家用检测仪)部署轻量化疾病预测模型,实现低延迟、隐私安全的实时健康风险评估。 一、技术架构设计 #mermaid-svg-iuNaeeLK2YoFKfao {font-family:"trebuchet ms",verdana,arial,sans-serif;font-size:16px;fill:#333;}#mermaid-svg…...

2.Vue编写一个app

1.src中重要的组成 1.1main.ts // 引入createApp用于创建应用 import { createApp } from "vue"; // 引用App根组件 import App from ./App.vue;createApp(App).mount(#app)1.2 App.vue 其中要写三种标签 <template> <!--html--> </template>…...

大语言模型如何处理长文本?常用文本分割技术详解

为什么需要文本分割? 引言:为什么需要文本分割?一、基础文本分割方法1. 按段落分割(Paragraph Splitting)2. 按句子分割(Sentence Splitting)二、高级文本分割策略3. 重叠分割(Sliding Window)4. 递归分割(Recursive Splitting)三、生产级工具推荐5. 使用LangChain的…...

GitHub 趋势日报 (2025年06月08日)

&#x1f4ca; 由 TrendForge 系统生成 | &#x1f310; https://trendforge.devlive.org/ &#x1f310; 本日报中的项目描述已自动翻译为中文 &#x1f4c8; 今日获星趋势图 今日获星趋势图 884 cognee 566 dify 414 HumanSystemOptimization 414 omni-tools 321 note-gen …...

06 Deep learning神经网络编程基础 激活函数 --吴恩达

深度学习激活函数详解 一、核心作用 引入非线性:使神经网络可学习复杂模式控制输出范围:如Sigmoid将输出限制在(0,1)梯度传递:影响反向传播的稳定性二、常见类型及数学表达 Sigmoid σ ( x ) = 1 1 +...

均衡后的SNRSINR

本文主要摘自参考文献中的前两篇&#xff0c;相关文献中经常会出现MIMO检测后的SINR不过一直没有找到相关数学推到过程&#xff0c;其中文献[1]中给出了相关原理在此仅做记录。 1. 系统模型 复信道模型 n t n_t nt​ 根发送天线&#xff0c; n r n_r nr​ 根接收天线的 MIMO 系…...

关键领域软件测试的突围之路:如何破解安全与效率的平衡难题

在数字化浪潮席卷全球的今天&#xff0c;软件系统已成为国家关键领域的核心战斗力。不同于普通商业软件&#xff0c;这些承载着国家安全使命的软件系统面临着前所未有的质量挑战——如何在确保绝对安全的前提下&#xff0c;实现高效测试与快速迭代&#xff1f;这一命题正考验着…...

Mysql中select查询语句的执行过程

目录 1、介绍 1.1、组件介绍 1.2、Sql执行顺序 2、执行流程 2.1. 连接与认证 2.2. 查询缓存 2.3. 语法解析&#xff08;Parser&#xff09; 2.4、执行sql 1. 预处理&#xff08;Preprocessor&#xff09; 2. 查询优化器&#xff08;Optimizer&#xff09; 3. 执行器…...

WebRTC从入门到实践 - 零基础教程

WebRTC从入门到实践 - 零基础教程 目录 WebRTC简介 基础概念 工作原理 开发环境搭建 基础实践 三个实战案例 常见问题解答 1. WebRTC简介 1.1 什么是WebRTC&#xff1f; WebRTC&#xff08;Web Real-Time Communication&#xff09;是一个支持网页浏览器进行实时语音…...