当前位置: 首页 > news >正文

kmeans 最佳聚类个数 | 轮廓系数(越大越好)

轮廓系数越大,表示簇内实例之间紧凑,簇间距离大,这正是聚类的标准概念。

  • 簇内的样本应该尽可能相似。
  • 不同簇之间应该尽可能不相似。

目的:鸢尾花数据进行kmeans聚类,最佳聚类个数是多少?

plot(iris[,1:4], col=iris$Species)
在这里插入图片描述

1. 标准化很重要

假设已经知道最佳是3类,

  • 使用原始数据做kmeans,和原始标签不一致的很多。
  • 如果做了标准化,kmeans的分类结果和原始标签一模一样。

(1). raw dat (错了好多)

dat=iris[, 1:4]
rownames(dat) = paste0("obs", 1:nrow(dat))
dat[1:3,]km_model <- kmeans( dat, centers = 3)# 获取分类结果
predictions <- km_model$cluster
table(predictions)dat$origin=iris$Species
dat$pred=predictionstable(dat$origin, dat$pred)
#           1  2  3
#setosa      0  0 50
#versicolor 48  2  0
#virginica  14 36  0plot(dat$Sepal.Length, dat$Sepal.Width, col=dat$origin, pch=19)
plot(dat$Sepal.Length, dat$Sepal.Width, col=dat$pred, pch=19)

(2). normalized dat (几乎全对)

dat=iris[, 1:4]
rownames(dat) = paste0("obs", 1:nrow(dat))
dat[1:3,]dat=apply(dat, 1, function(x){x/sum(x) * 1e4
}) |> t()  |> as.data.frame()
head(dat)# 行作为观测值
km_model <- kmeans( dat, centers = 3)# 获取分类结果
predictions <- km_model$cluster
table(predictions)dat$origin=iris$Species
dat$pred=predictionstable(dat$origin, dat$pred)
#             1  2  3
#setosa     50  0  0
#versicolor  0 45  5
#virginica   0  0 50

2. 最佳分类数

(0) 预处理

dat=iris[, 1:4]
rownames(dat) = paste0("obs", 1:nrow(dat))
dat[1:3,]dat=apply(dat, 1, function(x){x/sum(x) * 1e4
}) |> t()  |> as.data.frame()
head(dat)

(1) factoextra - silhouette: n=2

library(factoextra)
tmp = factoextra::fviz_nbclust( dat, kmeans, method = "silhouette")
#str(tmp)
tmp #图# fviz_nbclust(dat, kmeans, method = "silhouette", k.max = 20)

在这里插入图片描述

(2) 碎石图: n=2

# 在一个循环中进行15次的kmeans聚类分析
{
totalwSS=vector(mode = "numeric", 15)
for (i in 1:15){t1= kmeans(dat, i)totalwSS[i] <- t1$tot.withinss
}
# 聚类碎石图 - 使用plot函数绘制total_wss与no-of-clusters的数值。
plot(x=1:15,                         # x= 类数量, 1 to 15totalwSS,                      #每个类的total_wss值col="navy", lwd=2,type="b"                       # 绘制两点,并将它们连接起来
)
}

在这里插入图片描述

(3) silhouette 画图: n=2?

逐个画:

# 逐个画轮廓系数
library(cluster)
dis = dist(dat) #行之间的距离
#
n=3
kclu <- kmeans(dat, centers = 3, nstart=25)
kclu.sil=sortSilhouette( silhouette(kclu$cluster, dist = dis) )
plot(kclu.sil, col =1:n, #c("red", "orange", "blue"), main="")#
n=4
#library(cluster)
#dis = dist(dat) #行之间的距离
kclu <- kmeans(dat, centers = n, nstart=25)
kclu.sil=sortSilhouette( silhouette(kclu$cluster, dist = dis) )
plot(kclu.sil, col =1:n, # c("red", "orange", "blue"), main="")
#
#
n=8
#library(cluster)
#dis = dist(dat) #行之间的距离
kclu <- kmeans(dat, centers = n, nstart=25)
kclu.sil=sortSilhouette( silhouette(kclu$cluster, dist = dis) )
plot(kclu.sil, col =1:n, # c("red", "orange", "blue"), main="")
#

在这里插入图片描述

批量计算:

silhouette_score <- function(k){km <- kmeans(dat, centers = k, nstart=25)ss <- silhouette(km$cluster, dist(dat))mean(ss[, 3])
}
k <- 2:15
avg_sil <- sapply(k, silhouette_score)
plot(k, avg_sil, type='b',xlab='Number of clusters', ylab='Average Silhouette Scores', frame=FALSE)

在这里插入图片描述

最大是2,其次是3类。

根据本文图1,忽略颜色,只看数值分布,确实最佳是2类。

用标准化后的数据呢?
plot(dat, col=iris$Species, main="Normalized data")
在这里插入图片描述

plot(dat,main="Normalized data")

结论不变:如果忽略颜色,依旧是很清晰的2类。
在这里插入图片描述

(4) pam 是一种更稳定的 kmeans

Partitioning Around Medoids:
Partitioning (clustering) of the data into k clusters “around medoids”, a more robust version of K-means.

# 最佳分类数:
Ks=sapply(2:15, function(i){summary(silhouette(pam(dat, k=i)))$avg.width
})
plot(2:15,Ks,xlab="k",ylab="av. silhouette",type="b", pch=19)效果:
t1=pam(dat, k=3)
> table(t1$clustering, iris$Species)   setosa versicolor virginica1     50          0         02      0         44         03      0          6        50
还是有几个错的。

End

相关文章:

kmeans 最佳聚类个数 | 轮廓系数(越大越好)

轮廓系数越大&#xff0c;表示簇内实例之间紧凑&#xff0c;簇间距离大&#xff0c;这正是聚类的标准概念。 簇内的样本应该尽可能相似。不同簇之间应该尽可能不相似。 目的&#xff1a;鸢尾花数据进行kmeans聚类&#xff0c;最佳聚类个数是多少&#xff1f; plot(iris[,1:4…...

【纪念365天】我的创作纪念日

过去的一年 没有注意加入csdn已经有一年了。 这几天翻看小猴儿的通知才发现时间来到了一年的纪念日。稍稍思索想要将这一段时间的学习到的知识以及偶然遇到的机遇做一下总结。 上一次写纪念日是来到csdn128天的时候&#xff0c; 200天前我的学习状态是非常疯狂的。 只记得我当时…...

Opencv+ROS实现颜色识别应用

目录 一、工具 二、原理 概念 本质 三、实践 添加发布话题 主要代码 四、成果 五、总结 一、工具 opencvros ubuntu18.04 摄像头 二、原理 概念 彩色图像&#xff1a;RGB&#xff08;红&#xff0c;绿&#xff0c;蓝&#xff09; HSV图像&#xff1a;H&#xff0…...

蓝桥杯c++算法秒杀【6】之动态规划【下】(数字三角形、砝码称重(背包问题)、括号序列、异或三角:::非常典型的必刷例题!!!)

别忘了请点个赞收藏关注支持一下博主喵&#xff01;&#xff01;&#xff01;! ! ! ! &#xff01; 关注博主&#xff0c;更多蓝桥杯nice题目静待更新:) 动态规划 三、括号序列 【问题描述】 给定一个括号序列&#xff0c;要求尽可能少地添加若干括号使得括号序列变得合…...

C++设计模式(单例模式)

一、介绍 1.动机 在软件系统中&#xff0c;经常有这样一些特殊的类&#xff0c;必须保证它们在系统中只存在一个实例&#xff0c;才能确保它们的逻辑正确性、以及良好的效率。 如何绕过常规的构造器&#xff0c;提供一种机制来保证一个类只有一个实例? 这应该是类设计者的…...

前端---CSS(部分用法)

HTML画页面--》这个页面就是页面上需要的元素罗列起来&#xff0c;但是页面效果很差&#xff0c;不好看&#xff0c;为了让页面好看&#xff0c;为了修饰页面---》CSS CSS的作用&#xff1a;修饰HTML页面 用了CSS之后&#xff0c;样式和元素本身做到了分离的效果。---》降低了代…...

2024年最新版Java八股文复习

最新版本Java八股文复习&#xff0c;每天更新一篇&#xff0c;博主正在持续努力更新中~~~ 一、Java基础篇1、怎么理解面向对象&#xff1f;简单说说封装、继承、多态三大特性&#xff1f;2、多态体现在哪几个方面&#xff1f;3、面向对象的设计原则你知道有哪些吗&#xff1f;4…...

计算机毕业设计Hadoop+Spark音乐推荐系统 音乐预测系统 音乐可视化大屏 音乐爬虫 HDFS hive数据仓库 机器学习 深度学习 大数据毕业设计

温馨提示&#xff1a;文末有 CSDN 平台官方提供的学长联系方式的名片&#xff01; 温馨提示&#xff1a;文末有 CSDN 平台官方提供的学长联系方式的名片&#xff01; 温馨提示&#xff1a;文末有 CSDN 平台官方提供的学长联系方式的名片&#xff01; 作者简介&#xff1a;Java领…...

MyBatis高级扩展

一、Mapper批量映射优化: 1.需求: Mapper 配置文件很多时&#xff0c;在全局配置文件中一个一个注册太麻烦&#xff0c;希望有一个办法能够一劳永逸 2.配置方式: Mybatis允许在指定Mapper映射文件时&#xff0c;只指定其所在的包: <mappers><package name"c…...

代码美学2:MATLAB制作渐变色

效果&#xff1a; %代码美学&#xff1a;MATLAB制作渐变色 % 创建一个10x10的矩阵来表示热力图的数据 data reshape(1:100, [10, 10]);% 创建热力图 figure; imagesc(data);% 设置颜色映射为“cool” colormap(cool);% 在热力图上添加边框 axis on; grid on;% 设置热力图的颜色…...

浅谈- “ 变量中 无符号 与 有符号 的 值转换 ”

在同一个表达式中&#xff0c;若同时出现 无符号变量 与 有符号变量 &#xff1a; 1、都转换为无符号类型&#xff1a;&#xff08;注&#xff1a;2^324294967296&#xff09;即unsigned int 的最大值 2、然后再运行表达式 实例&#xff1a; #include <stdio.h>char fun(…...

【AI绘画】Midjourney进阶:色调详解(上)

博客主页&#xff1a; [小ᶻ☡꙳ᵃⁱᵍᶜ꙳] 本文专栏: AI绘画 | Midjourney 文章目录 &#x1f4af;前言&#x1f4af;Midjourney中的色彩控制为什么要控制色彩&#xff1f;为什么要在Midjourney中控制色彩&#xff1f; &#x1f4af;色调白色调淡色调明色调 &#x1f4af…...

代码管理之Gitlab

文章目录 Git基础概述场景本地修改未提交&#xff0c;拉取远程代码修改提交本地&#xff0c;远程已有新提交 GitIDEA引入Git拉取仓库代码最后位置 Git基础 概述 workspace 工作区&#xff1a;本地电脑上看到的目录&#xff1b; repository 本地仓库&#xff1a;就是工作区中隐…...

防御网络攻击的创新策略

关键要点 ● 了解各种类型的网络攻击对于组织加强防御至关重要。 ● 制定敏捷的网络安全策略可帮助企业快速应对新出现的威胁。 ● 跨行业协作和威胁情报共享可以增强整体安全性。 网络攻击威胁日益严重 网络攻击的数量和复杂程度急剧增加&#xff0c;对全球组织构成了重大…...

C++软件设计模式之组合模式概述

组合模式&#xff08;Composite Pattern&#xff09;是C软件设计模式中的一种&#xff0c;主要用于解决对象的层次结构问题。它允许你将对象组合成树形结构来表示“部分-整体”的层次结构&#xff0c;使得客户端可以统一地处理单个对象和组合对象。 主要用于解决的问题&#x…...

利用HTML5和CSS来实现一个漂亮的表格样式

利用HTML5和CSS来实现一个漂亮的表格样式 第一步&#xff1a;创建HTML结构第二步&#xff1a;添加CSS样式第三步&#xff1a;响应式设计第四步&#xff1a;加入交互效果 第一步&#xff1a;创建HTML结构 我们将用HTML创建一个基本的表格结构。代码如下&#xff1a; <!DOCT…...

Vivado程序固化到Flash

在上板调试FPGA时&#xff0c;通常使用JTAG接口下载程序到FPGA芯片中&#xff0c;FPGA本身是基于RAM工艺的器件&#xff0c;因此掉电后会丢失芯片内的程序&#xff0c;需要重新烧写程序。但是当程序需要投入使用时不能每一次都使用JTAG接口下载程序&#xff0c;一般FPGA的外围会…...

HCIA笔记3--TCP-UDP-交换机工作原理

1. tcp协议 可靠的连接 1.1 报文格式 1.2 三次握手 1.3 四次挥手 为什么TIME_WAIT需要2MSL的等待时间&#xff1f; &#xff08;a&#xff09; 为了实现可靠的关闭 &#xff08;b&#xff09;为了让过期的报文在网络上消失 对于(a), 假设host发给server的last ack丢了。 ser…...

计算机网络的功能

目录 信息交换 资源共享 分布式处理 可靠性增强 集中管理 信息交换 计算机网络最基本的功能之一是允许不同设备之间的数据通信。这包括电子邮件的发送和接收、即时消息的传递、文件传输等。通过网络&#xff0c;用户可以轻松地与全球各地的其他人进行沟通和协作。 信息交…...

Redis设计与实现第14章 -- 服务器 总结(命令执行器 serverCron函数 初始化)

14.1 命令请求的执行过程 一个命令请求从发送到获得回复的过程中&#xff0c;客户端和服务器都需要完成一系列操作。 14.1.1 发送命令请求 当用户在客户端中输入一个命令请求的时候&#xff0c;客户端会把这个命令请求转换为协议格式&#xff0c;然后通过连接到服务器的套接字…...

KubeSphere 容器平台高可用:环境搭建与可视化操作指南

Linux_k8s篇 欢迎来到Linux的世界&#xff0c;看笔记好好学多敲多打&#xff0c;每个人都是大神&#xff01; 题目&#xff1a;KubeSphere 容器平台高可用&#xff1a;环境搭建与可视化操作指南 版本号: 1.0,0 作者: 老王要学习 日期: 2025.06.05 适用环境: Ubuntu22 文档说…...

19c补丁后oracle属主变化,导致不能识别磁盘组

补丁后服务器重启&#xff0c;数据库再次无法启动 ORA01017: invalid username/password; logon denied Oracle 19c 在打上 19.23 或以上补丁版本后&#xff0c;存在与用户组权限相关的问题。具体表现为&#xff0c;Oracle 实例的运行用户&#xff08;oracle&#xff09;和集…...

基于大模型的 UI 自动化系统

基于大模型的 UI 自动化系统 下面是一个完整的 Python 系统,利用大模型实现智能 UI 自动化,结合计算机视觉和自然语言处理技术,实现"看屏操作"的能力。 系统架构设计 #mermaid-svg-2gn2GRvh5WCP2ktF {font-family:"trebuchet ms",verdana,arial,sans-…...

《用户共鸣指数(E)驱动品牌大模型种草:如何抢占大模型搜索结果情感高地》

在注意力分散、内容高度同质化的时代&#xff0c;情感连接已成为品牌破圈的关键通道。我们在服务大量品牌客户的过程中发现&#xff0c;消费者对内容的“有感”程度&#xff0c;正日益成为影响品牌传播效率与转化率的核心变量。在生成式AI驱动的内容生成与推荐环境中&#xff0…...

多种风格导航菜单 HTML 实现(附源码)

下面我将为您展示 6 种不同风格的导航菜单实现&#xff0c;每种都包含完整 HTML、CSS 和 JavaScript 代码。 1. 简约水平导航栏 <!DOCTYPE html> <html lang"zh-CN"> <head><meta charset"UTF-8"><meta name"viewport&qu…...

【C++从零实现Json-Rpc框架】第六弹 —— 服务端模块划分

一、项目背景回顾 前五弹完成了Json-Rpc协议解析、请求处理、客户端调用等基础模块搭建。 本弹重点聚焦于服务端的模块划分与架构设计&#xff0c;提升代码结构的可维护性与扩展性。 二、服务端模块设计目标 高内聚低耦合&#xff1a;各模块职责清晰&#xff0c;便于独立开发…...

return this;返回的是谁

一个审批系统的示例来演示责任链模式的实现。假设公司需要处理不同金额的采购申请&#xff0c;不同级别的经理有不同的审批权限&#xff1a; // 抽象处理者&#xff1a;审批者 abstract class Approver {protected Approver successor; // 下一个处理者// 设置下一个处理者pub…...

GruntJS-前端自动化任务运行器从入门到实战

Grunt 完全指南&#xff1a;从入门到实战 一、Grunt 是什么&#xff1f; Grunt是一个基于 Node.js 的前端自动化任务运行器&#xff0c;主要用于自动化执行项目开发中重复性高的任务&#xff0c;例如文件压缩、代码编译、语法检查、单元测试、文件合并等。通过配置简洁的任务…...

JavaScript基础-API 和 Web API

在学习JavaScript的过程中&#xff0c;理解API&#xff08;应用程序接口&#xff09;和Web API的概念及其应用是非常重要的。这些工具极大地扩展了JavaScript的功能&#xff0c;使得开发者能够创建出功能丰富、交互性强的Web应用程序。本文将深入探讨JavaScript中的API与Web AP…...

【无标题】路径问题的革命性重构:基于二维拓扑收缩色动力学模型的零点隧穿理论

路径问题的革命性重构&#xff1a;基于二维拓扑收缩色动力学模型的零点隧穿理论 一、传统路径模型的根本缺陷 在经典正方形路径问题中&#xff08;图1&#xff09;&#xff1a; mermaid graph LR A((A)) --- B((B)) B --- C((C)) C --- D((D)) D --- A A -.- C[无直接路径] B -…...