当前位置: 首页 > news >正文

算法的空间复杂度

空间复杂度

空间复杂度主要是衡量一个算法运行所需要的额外空间,在计算机发展早期,计算机的储存容量很小,所以空间复杂度是很重要的。但是经过计算机行业的迅速发展,计算机的容量已经不再是问题了,所以如今已经不再需要特别关注一个算法的空间复杂度。

空间复杂度也是一个数学表达式,是对一个算法的运行过程中临时占用储存空间大小的量度。

空间复杂度不是程序占用了多少bytes的空间,而是变量个数。空间复杂度计算也是使用大O渐进表示法。

函数运行时所需要的栈空间(存储参数、局部变量、一些寄存器信息等)在编译期间已经确定好了,因此空间复杂度主要通过函数在运行时候显式申请的额外空间来确定。

例1:

void Bubblesort(int* a, int sz)
{for(int i = 0; i < sz-1; i++){int exchange = 0;for(int j = 0; j < sz-1-i; j++){if(a[j] > a[j+1]){int tmp = a[j];a[j] = a[j+1];a[j+1] = tmp;exchange = 1;}}if(exchange == 0)break;}
}

冒泡排序,只使用了常数个空间,所以空间复杂度为 O(1);

例2:

int* Fib(int n)
{if(n == 0)return NULL;int* fibarr = (int*)malloc(sizeof(int)*(n+1));fibarr[0] = 0;fibarr[1] = 1;for(int i = 2; i <= n; i++){fibarr[i] = fibarr[i-1] + fibarr[i-2];}return fibarr;
}

fibarr开辟了N个int类型的空间,所以空间复杂度为O(N)

例3:

int fac(int n)
{if(n == 0)return 1;return fac(n-1)*n;
}

再fac函数中调用了N次fac函数,递归了N次,开辟了N个栈帧,每个栈使用了常数个空间,所以空间复杂度O(N)

例4:

请回答fib函数的空间复杂度是多少?

int fib(int n)
{if(n < 3)return 1;return fib(n-1) + fib(n-2);
}

                        A. O(1)        B.O(N)        C.O(N^2)        D.O(2^N)

                                                           .

                                                           .

                                                           .

                                                           .                                                           

                                                           .

                                                           .

                                                           .

                                                           .

                                                           .

                                                           .

                                                           .

                                                           .

                                                           .

                                                           .

答案:O(N)

对于 fib(n),递归调用的最大深度取决于 n,因为每次递归都会对 n−1或 n−2进行调用。

尽管函数中有很多重复计算(导致时间复杂度是指数级的),但调用栈的最大深度只与输入 n 的大小成线性关系。

比如调用 fib(n),最深的递归路径是 fib(n) → fib(n-1) → fib(n-2) → ... → fib(1)

每次递归调用都需要在栈上分配空间。最大栈深度是递归树的高度。在这种实现方式下,递归树的高度为 O(n)。

相关文章:

算法的空间复杂度

空间复杂度 空间复杂度主要是衡量一个算法运行所需要的额外空间&#xff0c;在计算机发展早期&#xff0c;计算机的储存容量很小&#xff0c;所以空间复杂度是很重要的。但是经过计算机行业的迅速发展&#xff0c;计算机的容量已经不再是问题了&#xff0c;所以如今已经不再需…...

自定义协议

1. 问题引入 问题&#xff1a;TCP是面向字节流的&#xff08;TCP不关心发送的数据是消息、文件还是其他任何类型的数据。它简单地将所有数据视为一个字节序列&#xff0c;即字节流。这意味着TCP不会对发送的数据进行任何特定的边界划分&#xff0c;它只是确保数据的顺序和完整…...

在 Taro 中实现系统主题适配:亮/暗模式

目录 背景实现方案方案一&#xff1a;CSS 变量 prefers-color-scheme 媒体查询什么是 prefers-color-scheme&#xff1f;代码示例 方案二&#xff1a;通过 JavaScript 监听系统主题切换 背景 用Taro开发的微信小程序&#xff0c;需求是页面的UI主题想要跟随手机系统的主题适配…...

autogen框架中使用chatglm4模型实现react

本文将介绍如何使用使用chatglm4实现react&#xff0c;利用环境变量、Tavily API和ReAct代理模式来回答用户提出的问题。 环境变量 首先&#xff0c;我们需要加载环境变量。这可以通过使用dotenv库来实现。 from dotenv import load_dotenv_ load_dotenv()注意.env文件处于…...

读《Effective Java》笔记 - 条目9

条目9&#xff1a;与try-finally 相比&#xff0c;首选 try -with -resource 什么是 try-finally&#xff1f; try-finally 是 Java 中传统的资源管理方式&#xff0c;通常用于确保资源&#xff08;如文件流、数据库连接等&#xff09;被正确关闭。 BufferedReader reader n…...

【软件入门】Git快速入门

Git快速入门 文章目录 Git快速入门0.前言1.安装和配置2.新建版本库2.1.本地创建2.2.云端下载 3.版本管理3.1.添加和提交文件3.2.回退版本3.2.1.soft模式3.2.2.mixed模式3.2.3.hard模式3.2.4.使用场景 3.3.查看版本差异3.4.忽略文件 4.云端配置4.1.Github4.1.1.SSH配置4.1.2.关联…...

nextjs window is not defined

问题产生的原因 在 Next.js 中&#xff0c;“window is not defined” 错误通常出现在服务器端渲染&#xff08;Server - Side Rendering&#xff0c;SSR&#xff09;的代码中。这是因为window对象是浏览器环境中的全局对象&#xff0c;在服务器端没有window这个概念。例如&am…...

C语言实现冒泡排序:从基础到优化全解析

一、什么是冒泡排序&#xff1f; 冒泡排序&#xff08;Bubble Sort&#xff09;是一种经典的排序算法&#xff0c;其工作原理非常直观&#xff1a;通过多次比较和交换相邻元素&#xff0c;将较大的元素“冒泡”到数组的末尾。经过多轮迭代&#xff0c;整个数组会变得有序。 二…...

windows11下git与 openssl要注意的问题

看了一下自己贴文的历史&#xff0c;有一条重要的忘了写了。 当时帮有位同事配置gitlab&#xff0c;众说周知gitlab是不太好操作。 但我还是自认自己git还是相当熟的。 解决了一系列问题&#xff0c;如配置代理&#xff0c;sshkey&#xff0c;私有库&#xff0c;等等&#xff0…...

lua除法bug

故事背景&#xff0c;新来了一个数值&#xff0c;要改公式。神奇的一幕出现了&#xff0c;公式算出一个非常大的数。排查是lua有一个除法bug,1除以大数得到一个非常大的数。 function div(a, b)return tonumber(string.format("%.2f", a/b)) end print(1/73003) pri…...

Ubuntu下Docker容器java服务往mysql插入中文数据乱码

一、问题描述 1、java服务部署在ubuntu下的docker容器内&#xff0c;但是会出现部分插入中文数据显示乱码&#xff0c;如图所示&#xff1a; 二、解决方案 1、查看mysql是否支持utf8&#xff0c;登录进入Mysql 输入命令&#xff1a; mysql -u root -pshow variables like c…...

C语言根据字符串变量获取/设置结构体成员值

一、背景 在项目中需要根据从数据库中获取的字段与对应的键值付给对应结构体成员上&#xff0c;而c语言中没有类似的反射机制&#xff0c;所以需要实现类似功能。例&#xff0c;从表中查到a 10&#xff0c;在结构体t中&#xff0c;需要将 t.a 10。 二、实现 感谢ChatGPT&…...

Selenium 自动化测试demo

场景描述&#xff1a; 模拟用户登录页面操作&#xff0c;包括输入用户名、密码、验证码。验证码为算数运算&#xff0c;如下&#xff1a; 使用到的工具和依赖&#xff1a; 1. Selenium&#xff1a;pip install selenium 2. 需要安装浏览器驱动&#xff1a;这里使用的是Edge 3…...

LeetCode 111.二叉树的最小深度

题目&#xff1a; 给定一个二叉树&#xff0c;找出其最小深度。 最小深度是从根节点到最近叶子节点的最短路径上的节点数量。 说明&#xff1a;叶子节点是指没有子节点的节点。 思路&#xff1a;自底向上&#xff08;归&#xff09;/自顶向下&#xff08;递&#xff09; DF…...

大工C语言作业答案

前言 这里是大连理工大学新版C语言课程MOOC作业的答案。 后期我会把全部的作业答案开源出来&#xff0c;希望对大家有帮助。 第九周第一题 #define _CRT_SECURE_NO_WARNINGS #include <stdio.h> int B(int i) {int sum 1;while (i > 0){sum i * sum;i--;}return su…...

【Unity踩坑】Unity中父对象是非均匀缩放时出现倾斜或剪切现象

The game object is deformed when the parent object is in non-uniform scaling. 先来看一下现象 有两个Cube, Cube1&#xff08;Scale2,1,1)&#xff0c;Cube2&#xff08;Scale1,1,1&#xff09; 将Cube2拖拽为Cube2的子对象。并且将position设置为&#xff08;-0.6,1,0&a…...

QT 跨平台实现 SSDP通信 支持多网卡

一.多网卡场景 在做SSDP通信的时候,客户端发出M-search命令后, 主机没有捕捉到SSDP的消息,你可以查看下,是不是局域网下,既打开了wifi,又连接了本地网络,mac os下很容易出现这种场景。此时,我们发送消息时,需要遍历所有网卡并发送M-search命令。 二.QT相关接口介绍 1…...

如何寻找适合的HTTP代理IP资源?

一、怎么找代理IP资源&#xff1f; 在选择代理IP资源的时候&#xff0c;很多小伙伴往往将可用率作为首要的参考指标。事实上&#xff0c;市面上的住宅IP或拨号VPS代理IP资源&#xff0c;其可用率普遍在95%以上&#xff0c;因此IP可用率并不是唯一的评判标准 其实更应该关注的…...

数据结构(ArrayList顺序表)

一、引言 1.什么是顺序表 定义&#xff1a; 顺序表是一种基于阵列实现的线性表结构&#xff0c;用连续的存储空间保存表中的数据元素&#xff0c;并按顺序排列。 底层依赖阵列&#xff0c;支持随机访问。元素之间没有额外的连接信息&#xff0c;如指针或链表节点。通过动态扩容…...

直接抄作业!Air780E模组LuatOS开发:位运算(bit)示例

在嵌入式开发中&#xff0c;位运算是一种高效且常用的操作技巧。本文将介绍如何使用Air780E模组和LuatOS进行位运算&#xff0c;并通过示例代码帮助读者快速上手。 一、位运算概述 位运算是一种在计算机系统中对二进制数位进行操作的运算。由于计算机内部数据的存储和处理都是…...

wordpress后台更新后 前端没变化的解决方法

使用siteground主机的wordpress网站&#xff0c;会出现更新了网站内容和修改了php模板文件、js文件、css文件、图片文件后&#xff0c;网站没有变化的情况。 不熟悉siteground主机的新手&#xff0c;遇到这个问题&#xff0c;就很抓狂&#xff0c;明明是哪都没操作错误&#x…...

华为云AI开发平台ModelArts

华为云ModelArts&#xff1a;重塑AI开发流程的“智能引擎”与“创新加速器”&#xff01; 在人工智能浪潮席卷全球的2025年&#xff0c;企业拥抱AI的意愿空前高涨&#xff0c;但技术门槛高、流程复杂、资源投入巨大的现实&#xff0c;却让许多创新构想止步于实验室。数据科学家…...

day52 ResNet18 CBAM

在深度学习的旅程中&#xff0c;我们不断探索如何提升模型的性能。今天&#xff0c;我将分享我在 ResNet18 模型中插入 CBAM&#xff08;Convolutional Block Attention Module&#xff09;模块&#xff0c;并采用分阶段微调策略的实践过程。通过这个过程&#xff0c;我不仅提升…...

java 实现excel文件转pdf | 无水印 | 无限制

文章目录 目录 文章目录 前言 1.项目远程仓库配置 2.pom文件引入相关依赖 3.代码破解 二、Excel转PDF 1.代码实现 2.Aspose.License.xml 授权文件 总结 前言 java处理excel转pdf一直没找到什么好用的免费jar包工具,自己手写的难度,恐怕高级程序员花费一年的事件,也…...

蓝牙 BLE 扫描面试题大全(2):进阶面试题与实战演练

前文覆盖了 BLE 扫描的基础概念与经典问题蓝牙 BLE 扫描面试题大全(1)&#xff1a;从基础到实战的深度解析-CSDN博客&#xff0c;但实际面试中&#xff0c;企业更关注候选人对复杂场景的应对能力&#xff08;如多设备并发扫描、低功耗与高发现率的平衡&#xff09;和前沿技术的…...

MODBUS TCP转CANopen 技术赋能高效协同作业

在现代工业自动化领域&#xff0c;MODBUS TCP和CANopen两种通讯协议因其稳定性和高效性被广泛应用于各种设备和系统中。而随着科技的不断进步&#xff0c;这两种通讯协议也正在被逐步融合&#xff0c;形成了一种新型的通讯方式——开疆智能MODBUS TCP转CANopen网关KJ-TCPC-CANP…...

JS手写代码篇----使用Promise封装AJAX请求

15、使用Promise封装AJAX请求 promise就有reject和resolve了&#xff0c;就不必写成功和失败的回调函数了 const BASEURL ./手写ajax/test.jsonfunction promiseAjax() {return new Promise((resolve, reject) > {const xhr new XMLHttpRequest();xhr.open("get&quo…...

【无标题】湖北理元理律师事务所:债务优化中的生活保障与法律平衡之道

文/法律实务观察组 在债务重组领域&#xff0c;专业机构的核心价值不仅在于减轻债务数字&#xff0c;更在于帮助债务人在履行义务的同时维持基本生活尊严。湖北理元理律师事务所的服务实践表明&#xff0c;合法债务优化需同步实现三重平衡&#xff1a; 法律刚性&#xff08;债…...

RKNN开发环境搭建2-RKNN Model Zoo 环境搭建

目录 1.简介2.环境搭建2.1 启动 docker 环境2.2 安装依赖工具2.3 下载 RKNN Model Zoo2.4 RKNN模型转化2.5编译C++1.简介 RKNN Model Zoo基于 RKNPU SDK 工具链开发, 提供了目前主流算法的部署例程. 例程包含导出RKNN模型, 使用 Python API, CAPI 推理 RKNN 模型的流程.   本…...

结合PDE反应扩散方程与物理信息神经网络(PINN)进行稀疏数据预测的技术方案

以下是一个结合PDE反应扩散方程与物理信息神经网络(PINN)进行稀疏数据预测的技术方案,包含完整数学推导、PyTorch/TensorFlow双框架实现代码及对比实验分析。 基于PINN的反应扩散方程稀疏数据预测与大规模数据泛化能力研究 1. 问题定义与数学模型 1.1 反应扩散方程 考虑标…...