Adaboost集成学习 | Python实现基于NuSVR-Adaboost多输入单输出回归预测
目录
- 效果一览
- 基本介绍
- 程序设计
- 参考资料
效果一览

基本介绍
基于NuSVR-Adaboost多输入单输出回归预测python代码
NuSVR是一种支持向量回归(SVR)算法的变体,用于解决回归问题。SVR是一种监督学习方法,它用于预测连续目标变量,而不是分类标签。NuSVR在SVR的基础上引入了一个参数nu,这个参数控制了支持向量的数量,因此可以用来控制模型的复杂性。
AdaBoost(Adaptive Boosting)是一种集成学习算法,用于提高分类或回归模型的性能。
将NuSVR和AdaBoost结合起来,可以得到NuSVR-Adaboost算法。该算法的基本思想是,首先使用NuSVR作为基本的回归模型,然后使用AdaBoost算法来集成多个NuSVR模型,从而提高整体的回归预测性能。在每一轮迭代中,AdaBoost会根据之前的回归结果调整样本的权重,使得回归模型更加关注预测误差大的样本,从而提高整体的回归性能。
1.输入多个特征,输出单个变量,多变量回归预测;
2.data为数据集,excel数据
相关文章:
Adaboost集成学习 | Python实现基于NuSVR-Adaboost多输入单输出回归预测
目录 效果一览基本介绍程序设计参考资料效果一览 基本介绍 基于NuSVR-Adaboost多输入单输出回归预测python代码 NuSVR是一种支持向量回归(SVR)算法的变体,用于解决回归问题。SVR是一种监督学习方法,它用于预测连续目标变量,而不是分类标签。NuSVR在SVR的基础上引入了一个…...
Python学习第十三天--面向对象,类和对象
一、面向过程和面向对象区别 面向过程:需要实现一个功能时,着重的是开发的步骤和过程,每个步都需要自己亲力亲为,需要编写代码(自己来做) 面向对象:需要实现一个功能时,不注重的是…...
AI运用落地思考:如何用AI进行系统运维?
1. 故障预测与预防 数据收集与分析:通过收集系统的各种运行数据,如服务器性能指标(CPU使用率、内存占用、磁盘I/O等)、网络流量数据、应用程序日志等。利用AI算法对这些海量数据进行分析,挖掘数据中的模式和相关性。例…...
springboot学习-分页/排序/多表查询的例子
最近喜欢上了springboot,真是个好的脚手架。今天继续学习分页/排序/多表查询等复杂功能。按步骤记录如下. 按步骤做的发现不可用,最终还是用的jdbctemplate解决。这也是一次经验。总计在最后。 1.maven依赖 首先从https://start.spring.io/ 选择需要的…...
windows 应用 UI 自动化实战
UI 自动化技术架构选型 UI 自动化是软件测试过程中的重要一环,网络上也有很多 UI 自动化相关的知识或资料,具体到 windows 端的 UI 自动化,我们需要从以下几个方面考虑: 开发语言 毋庸置疑,在 UI 自动化测试领域&am…...
ffmpeg命令详解
原文网址:ffmpeg命令详解_IT利刃出鞘的博客-CSDN博客 简介 本文介绍ffmpeg命令的用法。 命令示例 1.mp4和avi的基本互转 ffmpeg -i D:\input.mp4 E:\output.avi ffmpeg -i D:\input.avi E:\output.mp4 -i 表示input,即输入。后面填一个输入地址和一…...
【漏洞复现】CVE-2022-43396
漏洞信息 NVD - CVE-2022-43396 In the fix for CVE-2022-24697, a blacklist is used to filter user input commands. But there is a risk of being bypassed. The user can control the command by controlling the kylin.engine.spark-cmd parameter of conf. 背景介绍…...
文件的摘要算法(md5、sm3、sha256、crc)
为了校验文件在传输中保证完整性和准确性,因此需要发送方先对源文件产生一个校验码,并将该值传输给接收方,将附件通过ftph或http方式传输后,由接收方使用相同的算法对接收文件再获取一个新的校验码,将该值和发送方传的…...
如何借助AI生成PPT,让创作轻松又高效
PPT是现代职场中不可或缺的表达工具,但同时也可能是令人抓狂的时间杀手。几页幻灯片的制作,常常需要花费数小时调整字体、配色与排版。AI的飞速发展为我们带来了革新——AI生成PPT的技术不仅让制作流程大大简化,还重新定义了效率与创意的关系…...
云技术-docker
声明! 学习视频来自B站up主 **泷羽sec** 有兴趣的师傅可以关注一下,如涉及侵权马上删除文章,笔记只是方便各位师傅的学习和探讨,文章所提到的网站以及内容,只做学习交流,其他均与本人以及泷羽sec团…...
对docker安装的mysql实现主从同步
1:分别安装mysql主,从数据库 将主库容器名称改为mysql_master,将从库容器名称改为mysql_slave 安装教程:docker安装mysql 2:配置主库的my.cnf挂载文件 [mysqld] #log-bin:表示启用binlog功能,并指定二进制日志的存储目录。 log-binmysql-bin #binlog_f…...
【不定长滑动窗口】【灵神题单】【刷题笔记】
采摘水果 fruits[i]表示第i棵树上的水果种类目的是尽可能多收集水果规矩: 只有两个篮子,且每个篮子只能装一种水果,但是每个篮子能装的总量没限制一旦开始采摘,就会连续采摘,把两个篮子都用掉也就是说,采摘到最后一颗…...
AI写论文指令
一、论文选题指令 1、确定研究对象:我是一名xxx,请从以下素材内容中,结合xx相关知识,提炼出可供参考的学术概念 。以下是结合素材内容,提炼出的几个可供参考的学术概念 概念a:概念b:概念C&…...
2625扁平化嵌套数组
请你编写一个函数,它接收一个 多维数组 arr 和它的深度 n ,并返回该数组的 扁平化 后的结果。 多维数组 是一种包含整数或其他 多维数组 的递归数据结构。 数组 扁平化 是对数组的一种操作,定义是将原数组部分或全部子数组删除,…...
QT6学习第五天 第一个QT Quick程序
QT6学习第五天 第一个QT Quick程序 概述创建Qt Quick程序使用Qt资源文件 概述 如果将程序的用户界面成为前端,程序的数据存储和逻辑业务成为后端,那么传统QT Widgets程序的前后端都是用C完成的。对于现代软件开发而言,前端演化速度远快于后端…...
【开发商城系统】
在广西开发商城系统,可以按照以下步骤进行: 确定项目需求:与客户沟通,了解商城系统所需的功能和特性,并确定项目的预算和时间限制。 进行市场调研:了解广西地区的电商市场情况,包括竞争对手、消…...
(11)(2.2) BLHeli32 and BLHeli_S ESCs(二)
文章目录 前言 1 传递支持 前言 BLHeli 固件和配置应用程序的开发是为了允许配置 ESC 并提供额外功能。带有此固件的 ESC 允许配置定时、电机方向、LED、电机驱动频率等。在尝试使用 BLHeli 之前,请按照 DShot 设置说明进行操作(DShot setup instructions)。 1 传…...
C++ 11重点总结1
智能指针 智能指针: C11引入了四种智能指针: auto_ptr(已弃用)、unique_ptr、shared_ptr和weak_ptr。智能指针可以更有效地管理堆内存,并避免常见的内存泄漏问题。 shared_ptr: 自定义删除器。 shared_ptr使用引用计数来管理它指向的对象的生命周期。多个shared_ptr实例可以指向…...
海康VsionMaster学习笔记(学习工具+思路)
一、前言 VisionMaster算法平台集成机器视觉多种算法组件,适用多种应用场景,可快速组合算法,实现对工件或被测物的查找测量与缺陷检测等。VM算法平台依托海康威视在图像领域多年的技术积淀,自带强大的视觉分析工具库,可…...
基于Python语言的Web爬虫设计源码
基于Python语言的Web爬虫设计源码地址 该项目是一个基于Python语言的Web爬虫设计源码,包含20个文件,其中18个为Python源代码文件,1个Markdown文件用于文档说明,以及1个配置文件。该爬虫专注于网络信息的抓取与处理。 关键词 Py…...
wordpress后台更新后 前端没变化的解决方法
使用siteground主机的wordpress网站,会出现更新了网站内容和修改了php模板文件、js文件、css文件、图片文件后,网站没有变化的情况。 不熟悉siteground主机的新手,遇到这个问题,就很抓狂,明明是哪都没操作错误&#x…...
华为云AI开发平台ModelArts
华为云ModelArts:重塑AI开发流程的“智能引擎”与“创新加速器”! 在人工智能浪潮席卷全球的2025年,企业拥抱AI的意愿空前高涨,但技术门槛高、流程复杂、资源投入巨大的现实,却让许多创新构想止步于实验室。数据科学家…...
HTML 语义化
目录 HTML 语义化HTML5 新特性HTML 语义化的好处语义化标签的使用场景最佳实践 HTML 语义化 HTML5 新特性 标准答案: 语义化标签: <header>:页头<nav>:导航<main>:主要内容<article>&#x…...
label-studio的使用教程(导入本地路径)
文章目录 1. 准备环境2. 脚本启动2.1 Windows2.2 Linux 3. 安装label-studio机器学习后端3.1 pip安装(推荐)3.2 GitHub仓库安装 4. 后端配置4.1 yolo环境4.2 引入后端模型4.3 修改脚本4.4 启动后端 5. 标注工程5.1 创建工程5.2 配置图片路径5.3 配置工程类型标签5.4 配置模型5.…...
uni-app学习笔记二十二---使用vite.config.js全局导入常用依赖
在前面的练习中,每个页面需要使用ref,onShow等生命周期钩子函数时都需要像下面这样导入 import {onMounted, ref} from "vue" 如果不想每个页面都导入,需要使用node.js命令npm安装unplugin-auto-import npm install unplugin-au…...
vscode(仍待补充)
写于2025 6.9 主包将加入vscode这个更权威的圈子 vscode的基本使用 侧边栏 vscode还能连接ssh? debug时使用的launch文件 1.task.json {"tasks": [{"type": "cppbuild","label": "C/C: gcc.exe 生成活动文件"…...
Opencv中的addweighted函数
一.addweighted函数作用 addweighted()是OpenCV库中用于图像处理的函数,主要功能是将两个输入图像(尺寸和类型相同)按照指定的权重进行加权叠加(图像融合),并添加一个标量值&#x…...
DIY|Mac 搭建 ESP-IDF 开发环境及编译小智 AI
前一阵子在百度 AI 开发者大会上,看到基于小智 AI DIY 玩具的演示,感觉有点意思,想着自己也来试试。 如果只是想烧录现成的固件,乐鑫官方除了提供了 Windows 版本的 Flash 下载工具 之外,还提供了基于网页版的 ESP LA…...
Spring AI 入门:Java 开发者的生成式 AI 实践之路
一、Spring AI 简介 在人工智能技术快速迭代的今天,Spring AI 作为 Spring 生态系统的新生力量,正在成为 Java 开发者拥抱生成式 AI 的最佳选择。该框架通过模块化设计实现了与主流 AI 服务(如 OpenAI、Anthropic)的无缝对接&…...
Redis的发布订阅模式与专业的 MQ(如 Kafka, RabbitMQ)相比,优缺点是什么?适用于哪些场景?
Redis 的发布订阅(Pub/Sub)模式与专业的 MQ(Message Queue)如 Kafka、RabbitMQ 进行比较,核心的权衡点在于:简单与速度 vs. 可靠与功能。 下面我们详细展开对比。 Redis Pub/Sub 的核心特点 它是一个发后…...
