当前位置: 首页 > news >正文

【机器学习】机器学习的基本分类-监督学习(Supervised Learning)

监督学习是一种通过已有的输入数据(特征)和目标输出(标签)对模型进行训练的机器学习方法,旨在学到一个函数,将输入映射到正确的输出。


1. 监督学习概述

监督学习需要:

  • 输入数据(特征):X,如图片、文本、数值等。
  • 输出标签y,即目标值,如图片的分类标签、房价等。
  • 目标:通过训练模型,使其能够预测新数据的标签。

公式表示
从训练数据 (X, y) 中学到一个函数 f(x),使得对于新输入 x',预测值 f(x') 与真实值 y' 尽可能接近。


2. 常见任务类型

分类任务

目标:预测离散类别标签。

  • 示例:垃圾邮件检测(垃圾邮件/非垃圾邮件)、图片分类(猫/狗/鸟)。
  • 常见评价指标:准确率(Accuracy)、精确率(Precision)、召回率(Recall)、F1 分数等。
回归任务

目标:预测连续值。

  • 示例:房价预测、气温预测。
  • 常见评价指标:均方误差(MSE)、平均绝对误差(MAE)、决定系数(R²) 等。

3. 数据准备与预处理

3.1 数据收集
  • 数据来源:数据库、日志文件、公开数据集(如 Kaggle)。
  • 注意:确保数据多样性和质量。
3.2 数据清洗
  • 处理缺失值:均值填充、中位数填充或删除缺失数据。
  • 处理异常值:通过箱线图、标准差等方法检测并处理。
3.3 特征工程
  • 标准化/归一化:对数值型特征进行标准化,使其均值为 0,标准差为 1。
  • 编码:对类别型特征用独热编码(One-Hot Encoding)或标签编码(Label Encoding)。
  • 特征选择:删除低相关性或多余的特征,提高模型性能。
3.4 数据划分
  • 划分为训练集、验证集和测试集(例如 60%/20%/20%)。

4. 模型训练与评估

4.1 模型选择

根据任务选择合适的算法,如:

  • 分类:逻辑回归、支持向量机(SVM)、决策树、随机森林等。
  • 回归:线性回归、岭回归、Lasso 回归、梯度提升树(GBDT)等。
4.2 训练模型

通过优化损失函数(如均方误差、交叉熵)调整模型参数。

4.3 模型评估
  • 在验证集上评估性能,通过超参数调优(如学习率、正则化强度)优化模型。
  • 避免过拟合:使用正则化(L1/L2)、Dropout 或限制树深度等手段。

5. 常见算法及实现

以下是分类与回归常用算法的 Python 实现:

5.1 分类算法
  • 逻辑回归(Logistic Regression)
from sklearn.linear_model import LogisticRegression
model = LogisticRegression()
model.fit(X_train, y_train)
y_pred = model.predict(X_test)

  • 支持向量机(SVM)
from sklearn.svm import SVC
model = SVC(kernel='linear')
model.fit(X_train, y_train)
y_pred = model.predict(X_test)
5.2 回归算法
  • 线性回归
from sklearn.linear_model import LinearRegression
model = LinearRegression()
model.fit(X_train, y_train)
y_pred = model.predict(X_test)
  • 梯度提升树(GBDT)
from sklearn.ensemble import GradientBoostingRegressor
model = GradientBoostingRegressor()
model.fit(X_train, y_train)
y_pred = model.predict(X_test)

6. 案例分析

案例 1:分类问题(垃圾邮件检测)
  1. 数据:下载带有邮件内容及是否垃圾的标注数据集。
  2. 特征提取:对文本数据进行向量化(如 TF-IDF)。
  3. 模型训练:使用逻辑回归模型。
  4. 评估:计算准确率、F1 分数。
案例 2:回归问题(房价预测)
  1. 数据:房屋面积、卧室数量、地理位置等特征。
  2. 预处理:标准化数值型特征,编码类别型特征。
  3. 模型训练:使用随机森林回归模型。
  4. 评估:计算 MSE 和 R²。

7. 监督学习的挑战与改进

  1. 过拟合与欠拟合

    • 解决过拟合:增加数据量、使用正则化、减少模型复杂度。
    • 解决欠拟合:增加特征、使用更复杂模型。
  2. 数据不平衡

    • 分类问题中类别分布不均。
    • 解决方法:采样技术(过采样/下采样)、使用 F1 分数评估。
  3. 噪声数据与异常值

    • 影响模型性能。
    • 解决方法:清洗数据、使用稳健算法。
  4. 模型解释性

    • 如深度学习模型不易解释。
    • 解决方法:使用可解释性工具(如 SHAP、LIME)。

8. 工具与框架

  1. 数据预处理:pandas, numpy
  2. 机器学习:scikit-learn, xgboost, lightgbm
  3. 可视化:matplotlib, seaborn

通过动手实践小项目(如图片分类或简单预测任务),可以快速理解和掌握监督学习的基本原理和应用技巧!如果有具体需求,我可以进一步提供代码和案例指导。

相关文章:

【机器学习】机器学习的基本分类-监督学习(Supervised Learning)

监督学习是一种通过已有的输入数据(特征)和目标输出(标签)对模型进行训练的机器学习方法,旨在学到一个函数,将输入映射到正确的输出。 1. 监督学习概述 监督学习需要: 输入数据(特…...

Oracle之提高PLSQL的执行性能

目录 1、SQL解析详解 2、演示示例 3、启用Oracle跟踪事件 4、查看改造后SQL性能对比结果 更多技术干货,关注个人博客吧 1、SQL解析详解 SQL解析是数据块处理SQL语句不可缺少的步骤,是在解析器中执行的。将SQL转换成数据库可以执行的低级指令。 SQL解析分为硬解析和软…...

[VSCode] vscode下载安装及安装中文插件详解(附下载文件)

前言 vscode 链接:https://pan.quark.cn/s/3acbb8aed758 提取码:dSyt VSCode 是一款由微软开发且跨平台的免费源代码编辑器;该软件支持语法高亮、代码自动补全、代码重构、查看定义功能,并且内置了命令行工具和Git版本控制系统。 …...

PHP中类名加双冒号的作用

在 PHP 中,类名加双冒号(::) 是一种用于访问类的静态成员和常量的语法。它也可以用来调用类的静态方法和访问 PHP 的类相关关键词(如 parent、self 和 static)。以下是详细的解释和用法。 1. 用途概述 :: 被称为作用域…...

前端编程训练 异步编程篇 请求接口 vue与react中的异步

文章目录 前言代码执行顺序的几个关键点接口请求vue与react中的异步vue中的异步react的state修改异步 前言 本文是B站三十的前端课的笔记前端编程训练,异步编程篇 代码执行顺序的几个关键点 我们可以理解为代码就是一行一行,一句一句是执行(定义变量&…...

【kafka03】消息队列与微服务之Kafka 读写数据

Kafka 读写数据 参考文档 Apache Kafka 常见命令 kafka-topics.sh #消息的管理命令 kafka-console-producer.sh #生产者的模拟命令 kafka-console-consumer.sh #消费者的模拟命令 创建 Topic 创建topic名为 chen,partitions(分区)为3&#xff0…...

【分布式系统】唯一性ID的实现

1、UUID(通用唯一标识符) 1、UUID本身 一种用于标识信息的标准化方法。一个128位的数字,常表示为32个十六进制数字,以连字符分隔成五组:8-4-4-4-12。 版本: UUID有不同的版本,最常见的是基于时…...

哪里能找到好用的动物视频素材 优质网站推荐

想让你的短视频增添些活泼生动的动物元素?无论是搞笑的宠物瞬间,还是野外猛兽的雄姿,这些素材都能让视频更具吸引力。今天就为大家推荐几个超实用的动物视频素材网站,不论你是短视频新手还是老手,都能在这些网站找到心…...

SRAM芯片数据采集解决方案

SRAM芯片数据采集解决方案致力于提供一种高效、稳定且易于操作的方法,以确保从静态随机存取存储器SRAM芯片中准确无误地获取数据。 这种解决方案通常包括硬件接口和软件工具,它们协同工作,以实现对SRAM芯片的无缝访问和数据传输。 在硬件方…...

【贪心算法第七弹——674.最长连续递增序列(easy)】

目录 1.题目解析 题目来源 测试用例 2.算法原理 3.实战代码 代码分析 1.题目解析 题目来源 674.最长递增子序列——力扣 测试用例 2.算法原理 贪心思路 3.实战代码 class Solution { public:int findLengthOfLCIS(vector<int>& nums) {int n nums.size();in…...

[AI] 知之AI推出3D智能宠物:助力语言学习与口语提升的新选择

Hello! 知之AI官网 [AI] 知之AI推出3D智能宠物&#xff1a;助力语言学习与口语提升的新选择 随着人工智能技术的飞速发展&#xff0c;虚拟助手和智能设备不断进入我们的生活。近日&#xff0c;知之AI重磅推出了一款创新产品——3D智能宠物。这一产品不仅具备多国语言交流能力&…...

Android 14之HIDL转AIDL通信

Android 14之HIDL转AIDL通信 1、interface接口1.1 接口变更1.2 生成hidl2aidl工具1.3 执行hidl2aidl指令1.4 修改aidl的Android.bp文件1.5 创建路径1.6 拷贝生成的aidl到1和current1.7 更新与冻结版本1.8 编译模块接口 2、服务端代码适配hal代码修改2.1 修改Android.bp的hidl依…...

【R库包安装】R库包安装总结:conda、CRAN等

【R库包安装】R studio 安装rgdal库/BPST库 R studio 安装rgdal库解决方法 R studio 安装BPST库&#xff08;github&#xff09;解决方法方法1&#xff1a;使用devtools安装方法2&#xff1a;下载安装包直接在Rstudio中安装 参考 基础 R 库包的安装可参见另一博客-【R库包安装】…...

学习PMC要不要去培训班?

在当今快速变化的商业环境中&#xff0c;PMC作为供应链管理的核心环节之一&#xff0c;其重要性日益凸显。PMC不仅关乎产品的物料计划、采购、库存控制及物流协调&#xff0c;还直接影响到企业的生产效率、成本控制以及市场竞争力。面对这一专业领域的学习需求&#xff0c;许多…...

前端 用js封装部分数据结构

文章目录 Stack队列链表Setset 用来数组去重set用来取两个数组的并集set用来取两个数组的交集set用来取两个数组的差集 字典 Stack 栈&#xff0c;先进后出&#xff0c;后进先出。用数组来进行模拟&#xff0c;通过push存入&#xff0c;通过pop取出。 class Stack {// 带#表示…...

cocoscreator-doc-TS:目录

cocoscreator-doc-TS-脚本开发-访问节点和组件-CSDN博客 cocoscreator-doc-TS-常用节点和组件接口-CSDN博客 cocoscreator-doc-TS-脚本开发-创建和销毁节点-CSDN博客 cocoscreator-doc-TS-脚本开发-加载和切换场景-CSDN博客 cocoscreator-doc-TS-脚本开发-获取和设置资源-CS…...

理解Java集合的基本用法—Collection:List、Set 和 Queue,Map

本博文部分参考 博客 &#xff0c;强烈推荐这篇博客&#xff0c;写得超级全面&#xff01;&#xff01;&#xff01; 图片来源 Java 集合框架 主要包括两种类型的容器&#xff0c;一种是集合&#xff08;Collection&#xff09;&#xff0c;存储一个元素集合&#xff08;单列…...

IOC容器实现分层解耦

文章开始之前&#xff0c;先引入软件开发的两个名词&#xff1a;耦合和内聚。耦合是指&#xff1a;衡量软件中各个层&#xff08;三层架构&#xff09;/各个模块的依赖关联程度&#xff1b;内聚是指&#xff1a;软件中各个功能模块内部的功能联系。三层架构中Controller、Servi…...

Flutter 共性元素动画

在 Flutter 中&#xff0c;共性元素动画&#xff08;Shared Element Transitions&#xff09;用于在页面导航或组件切换时创建视觉上更流畅和连贯的动画效果。这种动画可以使用户感受到两个界面之间的“物理联系”&#xff0c;比如图片从缩略图到全屏的扩大效果。 前置知识点整…...

K8s内存溢出问题剖析:排查与解决方案

文章目录 一、背景二、排查方案&#xff1a;1. 可能是数据量超出了限制的大小&#xff0c;检查数据目录大小2. 查看是否是内存溢出2.1 排查数据量&#xff08;查看数据目录大小是否超过limit限制&#xff09;2.2 查看pod详情发现问题 三、解决过程 一、背景 做redis压测过程中…...

挑战杯推荐项目

“人工智能”创意赛 - 智能艺术创作助手&#xff1a;借助大模型技术&#xff0c;开发能根据用户输入的主题、风格等要求&#xff0c;生成绘画、音乐、文学作品等多种形式艺术创作灵感或初稿的应用&#xff0c;帮助艺术家和创意爱好者激发创意、提高创作效率。 ​ - 个性化梦境…...

椭圆曲线密码学(ECC)

一、ECC算法概述 椭圆曲线密码学&#xff08;Elliptic Curve Cryptography&#xff09;是基于椭圆曲线数学理论的公钥密码系统&#xff0c;由Neal Koblitz和Victor Miller在1985年独立提出。相比RSA&#xff0c;ECC在相同安全强度下密钥更短&#xff08;256位ECC ≈ 3072位RSA…...

大型活动交通拥堵治理的视觉算法应用

大型活动下智慧交通的视觉分析应用 一、背景与挑战 大型活动&#xff08;如演唱会、马拉松赛事、高考中考等&#xff09;期间&#xff0c;城市交通面临瞬时人流车流激增、传统摄像头模糊、交通拥堵识别滞后等问题。以演唱会为例&#xff0c;暖城商圈曾因观众集中离场导致周边…...

【开发技术】.Net使用FFmpeg视频特定帧上绘制内容

目录 一、目的 二、解决方案 2.1 什么是FFmpeg 2.2 FFmpeg主要功能 2.3 使用Xabe.FFmpeg调用FFmpeg功能 2.4 使用 FFmpeg 的 drawbox 滤镜来绘制 ROI 三、总结 一、目的 当前市场上有很多目标检测智能识别的相关算法&#xff0c;当前调用一个医疗行业的AI识别算法后返回…...

精益数据分析(97/126):邮件营销与用户参与度的关键指标优化指南

精益数据分析&#xff08;97/126&#xff09;&#xff1a;邮件营销与用户参与度的关键指标优化指南 在数字化营销时代&#xff0c;邮件列表效度、用户参与度和网站性能等指标往往决定着创业公司的增长成败。今天&#xff0c;我们将深入解析邮件打开率、网站可用性、页面参与时…...

Python ROS2【机器人中间件框架】 简介

销量过万TEEIS德国护膝夏天用薄款 优惠券冠生园 百花蜂蜜428g 挤压瓶纯蜂蜜巨奇严选 鞋子除臭剂360ml 多芬身体磨砂膏280g健70%-75%酒精消毒棉片湿巾1418cm 80片/袋3袋大包清洁食品用消毒 优惠券AIMORNY52朵红玫瑰永生香皂花同城配送非鲜花七夕情人节生日礼物送女友 热卖妙洁棉…...

人工智能(大型语言模型 LLMs)对不同学科的影响以及由此产生的新学习方式

今天是关于AI如何在教学中增强学生的学习体验&#xff0c;我把重要信息标红了。人文学科的价值被低估了 ⬇️ 转型与必要性 人工智能正在深刻地改变教育&#xff0c;这并非炒作&#xff0c;而是已经发生的巨大变革。教育机构和教育者不能忽视它&#xff0c;试图简单地禁止学生使…...

【JVM面试篇】高频八股汇总——类加载和类加载器

目录 1. 讲一下类加载过程&#xff1f; 2. Java创建对象的过程&#xff1f; 3. 对象的生命周期&#xff1f; 4. 类加载器有哪些&#xff1f; 5. 双亲委派模型的作用&#xff08;好处&#xff09;&#xff1f; 6. 讲一下类的加载和双亲委派原则&#xff1f; 7. 双亲委派模…...

在Mathematica中实现Newton-Raphson迭代的收敛时间算法(一般三次多项式)

考察一般的三次多项式&#xff0c;以r为参数&#xff1a; p[z_, r_] : z^3 (r - 1) z - r; roots[r_] : z /. Solve[p[z, r] 0, z]&#xff1b; 此多项式的根为&#xff1a; 尽管看起来这个多项式是特殊的&#xff0c;其实一般的三次多项式都是可以通过线性变换化为这个形式…...

【Veristand】Veristand环境安装教程-Linux RT / Windows

首先声明&#xff0c;此教程是针对Simulink编译模型并导入Veristand中编写的&#xff0c;同时需要注意的是老用户编译可能用的是Veristand Model Framework&#xff0c;那个是历史版本&#xff0c;且NI不会再维护&#xff0c;新版本编译支持为VeriStand Model Generation Suppo…...