当前位置: 首页 > news >正文

【人工智能】Python常用库-TensorFlow常用方法教程

TensorFlow 是一个广泛应用的开源深度学习框架,支持多种机器学习任务,如深度学习、神经网络、强化学习等。以下是 TensorFlow 的详细教程,涵盖基础使用方法和示例代码。


1. 安装与导入

安装 TensorFlow:

pip install tensorflow

导入 TensorFlow:

import tensorflow as tf
import numpy as np

验证安装:

print(tf.__version__)  # 查看 TensorFlow 版本

2. TensorFlow 基础

2.1 张量(Tensor)

TensorFlow 的核心数据结构是张量,它是一个多维数组。

# 创建张量
a = tf.constant([1, 2, 3], dtype=tf.float32)  # 常量张量
b = tf.Variable([4, 5, 6], dtype=tf.float32)  # 可变张量# 基本运算
c = a + b
print(c.numpy())  # 转换为 NumPy 数组输出

输出结果

[5. 7. 9.]
2.2 自动求导

TensorFlow 支持自动计算梯度。

x = tf.Variable(3.0)with tf.GradientTape() as tape:y = x**2  # 定义目标函数dy_dx = tape.gradient(y, x)  # 自动求导
print(dy_dx.numpy())

输出结果

6.0

3. 构建模型

3.1 使用 Sequential API
from tensorflow.keras import Sequential
from tensorflow.keras.layers import Dense# 构建简单神经网络
model = Sequential([Dense(64, activation='relu', input_shape=(10,)),Dense(32, activation='relu'),Dense(1, activation='sigmoid')
])# 查看模型结构
model.summary()

输出结果

Model: "sequential"
_________________________________________________________________Layer (type)                Output Shape              Param #   
=================================================================dense (Dense)               (None, 64)                704       dense_1 (Dense)             (None, 32)                2080      dense_2 (Dense)             (None, 1)                 33        =================================================================
Total params: 2,817
Trainable params: 2,817
Non-trainable params: 0
_________________________________________________________________
3.2 自定义模型
import tensorflow as tf
from tensorflow.keras.layers import Denseclass MyModel(tf.keras.Model):def __init__(self):super(MyModel, self).__init__()self.dense1 = Dense(64, activation='relu')self.dense2 = Dense(32, activation='relu')self.output_layer = Dense(1, activation='sigmoid')def call(self, inputs):x = self.dense1(inputs)x = self.dense2(x)return self.output_layer(x)model = MyModel()input_shape = (None, 128, 128, 3)
model.build(input_shape)
model.summary()

输出结果

Model: "my_model"
_________________________________________________________________Layer (type)                Output Shape              Param #   
=================================================================dense (Dense)               multiple                  256       dense_1 (Dense)             multiple                  2080      dense_2 (Dense)             multiple                  33        =================================================================
Total params: 2,369
Trainable params: 2,369
Non-trainable params: 0
_________________________________________________________________

4. 数据处理

4.1 数据加载
from tensorflow.keras.datasets import mnist# 加载 MNIST 数据集
(x_train, y_train), (x_test, y_test) = mnist.load_data()# 数据预处理
x_train = x_train / 255.0  # 归一化
x_test = x_test / 255.0
x_train = x_train.reshape(-1, 28*28)  # 展平
x_test = x_test.reshape(-1, 28*28)
4.2 创建数据管道
# 使用 Dataset API 创建数据管道
dataset = tf.data.Dataset.from_tensor_slices((x_train, y_train))
dataset = dataset.shuffle(10000).batch(32).prefetch(tf.data.AUTOTUNE)

5. 模型训练与评估

5.1 编译模型
model.compile(optimizer='adam',loss='sparse_categorical_crossentropy',metrics=['accuracy'])
5.2 训练模型
history = model.fit(x_train, y_train, epochs=10, batch_size=32, validation_split=0.2)
 5.3 评估模型
test_loss, test_acc = model.evaluate(x_test, y_test)
print(f"Test accuracy: {test_acc}")

完整代码

import tensorflow as tf
from tensorflow.keras import Sequential
from tensorflow.keras.layers import Dense, Flatten
from tensorflow.keras.datasets import mnist# 加载MNIST数据集
(x_train, y_train), (x_test, y_test) = mnist.load_data()# 数据预处理:归一化到 [0, 1]
x_train = x_train / 255.0
x_test = x_test / 255.0# 构建模型
model = Sequential([Flatten(input_shape=(28, 28)),  # 将28x28的图像展平为1维Dense(128, activation='relu'),  # 全连接层,128个神经元Dense(10, activation='softmax')  # 输出层,10个类别
])# 编译模型
model.compile(optimizer='adam',loss='sparse_categorical_crossentropy',metrics=['accuracy'])# 模型训练
history = model.fit(x_train, y_train, epochs=10, batch_size=32, validation_split=0.2)# 模型评估
test_loss, test_acc = model.evaluate(x_test, y_test)
print(f"Test accuracy: {test_acc}")

输出结果

Epoch 1/10
1500/1500 [==============================] - 3s 2ms/step - loss: 0.2894 - accuracy: 0.9178 - val_loss: 0.1607 - val_accuracy: 0.9547
Epoch 2/10
1500/1500 [==============================] - 2s 1ms/step - loss: 0.1301 - accuracy: 0.9614 - val_loss: 0.1131 - val_accuracy: 0.9656
Epoch 3/10
1500/1500 [==============================] - 2s 1ms/step - loss: 0.0875 - accuracy: 0.9736 - val_loss: 0.1000 - val_accuracy: 0.9683
Epoch 4/10
1500/1500 [==============================] - 2s 1ms/step - loss: 0.0658 - accuracy: 0.9804 - val_loss: 0.0934 - val_accuracy: 0.9728
Epoch 5/10
1500/1500 [==============================] - 2s 1ms/step - loss: 0.0506 - accuracy: 0.9852 - val_loss: 0.0893 - val_accuracy: 0.9715
Epoch 6/10
1500/1500 [==============================] - 2s 1ms/step - loss: 0.0397 - accuracy: 0.9878 - val_loss: 0.0908 - val_accuracy: 0.9731
Epoch 7/10
1500/1500 [==============================] - 2s 1ms/step - loss: 0.0311 - accuracy: 0.9906 - val_loss: 0.0882 - val_accuracy: 0.9749
Epoch 8/10
1500/1500 [==============================] - 2s 1ms/step - loss: 0.0251 - accuracy: 0.9924 - val_loss: 0.0801 - val_accuracy: 0.9777
Epoch 9/10
1500/1500 [==============================] - 2s 1ms/step - loss: 0.0196 - accuracy: 0.9945 - val_loss: 0.0866 - val_accuracy: 0.9755
Epoch 10/10
1500/1500 [==============================] - 2s 1ms/step - loss: 0.0166 - accuracy: 0.9949 - val_loss: 0.0980 - val_accuracy: 0.9735
313/313 [==============================] - 0s 863us/step - loss: 0.0886 - accuracy: 0.9758
Test accuracy: 0.9757999777793884

代码说明

  1. 数据加载与预处理

    • mnist.load_data():加载手写数字数据集。
    • 数据归一化:将像素值从 0-255 归一化到 0-1,有助于加速训练。
  2. 模型构建

    • Flatten 层:将二维的图像数据展平为一维数组,便于输入全连接层。
    • Dense 层:
      • 第一层使用 ReLU 激活函数。
      • 第二层是输出层,使用 Softmax 激活函数,用于多分类任务。
  3. 模型编译

    • 优化器:adam 是一种适用于大多数情况的优化算法。
    • 损失函数:sparse_categorical_crossentropy,用于分类任务。
  4. 训练

    • validation_split=0.2:从训练数据中划分 20% 用作验证集。
    • epochs=10:训练 10 个轮次。
  5. 评估

    • model.evaluate():评估模型在测试集上的性能,返回损失值和准确率。

6. 可视化

6.1 绘制训练过程
import matplotlib.pyplot as plt# 绘制训练与验证准确率
plt.plot(history.history['accuracy'], label='Training Accuracy')
plt.plot(history.history['val_accuracy'], label='Validation Accuracy')
plt.legend()
plt.title('Accuracy over Epochs')
plt.show()
6.2 绘制模型预测
# 显示预测结果
predictions = model.predict(x_test[:10])
print("Predicted labels:", np.argmax(predictions, axis=1))
print("True labels:", y_test[:10])

输出结果

Predicted labels: [7 2 1 0 4 1 4 9 5 9]
True labels: [7 2 1 0 4 1 4 9 5 9]

7. 高级功能

7.1 保存与加载模型
# 保存模型
model.save('my_model.h5')# 加载模型
loaded_model = tf.keras.models.load_model('my_model.h5')
7.2 自定义训练过程
optimizer = tf.keras.optimizers.Adam()
loss_fn = tf.keras.losses.SparseCategoricalCrossentropy()for epoch in range(5):for x_batch, y_batch in dataset:with tf.GradientTape() as tape:predictions = model(x_batch, training=True)loss = loss_fn(y_batch, predictions)gradients = tape.gradient(loss, model.trainable_variables)optimizer.apply_gradients(zip(gradients, model.trainable_variables))print(f"Epoch {epoch+1} Loss: {loss.numpy()}")

完整代码 

import tensorflow as tf
from tensorflow.keras.datasets import mnist
from tensorflow.keras.layers import Dense# 加载 MNIST 数据集
(x_train, y_train), (x_test, y_test) = mnist.load_data()# 将标签二值化(偶数为 1,奇数为 0)
y_train = (y_train % 2 == 0).astype(int)
y_test = (y_test % 2 == 0).astype(int)# 数据预处理
x_train = x_train / 255.0  # 归一化
x_test = x_test / 255.0
x_train = x_train.reshape(-1, 28 * 28)  # 展平
x_test = x_test.reshape(-1, 28 * 28)# 使用 Dataset API 创建数据管道
dataset = tf.data.Dataset.from_tensor_slices((x_train, y_train))
dataset = dataset.shuffle(10000).batch(32).prefetch(tf.data.AUTOTUNE)# 定义模型
class MyModel(tf.keras.Model):def __init__(self):super(MyModel, self).__init__()self.dense1 = Dense(64, activation='relu')self.dense2 = Dense(32, activation='relu')self.output_layer = Dense(1, activation='sigmoid')  # 输出单个概率def call(self, inputs):x = self.dense1(inputs)x = self.dense2(x)return self.output_layer(x)model = MyModel()# 自定义训练模型# 优化器和损失函数
optimizer = tf.keras.optimizers.Adam()
loss_fn = tf.keras.losses.BinaryCrossentropy()# 模型训练
for epoch in range(5):for x_batch, y_batch in dataset:with tf.GradientTape() as tape:predictions = model(x_batch, training=True)loss = loss_fn(y_batch, predictions)  # 使用二分类损失函数gradients = tape.gradient(loss, model.trainable_variables)optimizer.apply_gradients(zip(gradients, model.trainable_variables))print(f"Epoch {epoch + 1} Loss: {loss.numpy()}")

输出结果

Epoch 1 Loss: 0.14392520487308502
Epoch 2 Loss: 0.013877220451831818
Epoch 3 Loss: 0.006577217951416969
Epoch 4 Loss: 0.004411072935909033
Epoch 5 Loss: 0.0037908260710537434

8. 实际应用案例

8.1 图像分类
from tensorflow.keras.datasets import fashion_mnist
from tensorflow.keras.utils import to_categorical
from tensorflow.keras.layers import Dense
from tensorflow.keras import Sequential# 加载数据集
(x_train, y_train), (x_test, y_test) = fashion_mnist.load_data()# 数据预处理
x_train, x_test = x_train / 255.0, x_test / 255.0
y_train, y_test = to_categorical(y_train), to_categorical(y_test)# 模型构建与训练
model = Sequential([Dense(128, activation='relu', input_shape=(28*28,)),Dense(64, activation='relu'),Dense(10, activation='softmax')
])model.compile(optimizer='adam', loss='categorical_crossentropy', metrics=['accuracy'])
model.fit(x_train.reshape(-1, 28*28), y_train, epochs=5, batch_size=32, validation_split=0.2)

输出结果

Epoch 1/5
1500/1500 [==============================] - 3s 2ms/step - loss: 0.5128 - accuracy: 0.8172 - val_loss: 0.3955 - val_accuracy: 0.8561
Epoch 2/5
1500/1500 [==============================] - 3s 2ms/step - loss: 0.3794 - accuracy: 0.8621 - val_loss: 0.3925 - val_accuracy: 0.8546
Epoch 3/5
1500/1500 [==============================] - 3s 2ms/step - loss: 0.3403 - accuracy: 0.8741 - val_loss: 0.3721 - val_accuracy: 0.8661
Epoch 4/5
1500/1500 [==============================] - 3s 2ms/step - loss: 0.3158 - accuracy: 0.8826 - val_loss: 0.3390 - val_accuracy: 0.8767
Epoch 5/5
1500/1500 [==============================] - 2s 2ms/step - loss: 0.3011 - accuracy: 0.8883 - val_loss: 0.3292 - val_accuracy: 0.8790

总结

TensorFlow 提供了从数据处理到模型训练和部署的完整解决方案。其灵活的 API 和强大的功能使得研究人员和工程师可以快速实现复杂的机器学习和深度学习任务。通过不断实践,可以深入了解 TensorFlow 的更多特性。

相关文章:

【人工智能】Python常用库-TensorFlow常用方法教程

TensorFlow 是一个广泛应用的开源深度学习框架,支持多种机器学习任务,如深度学习、神经网络、强化学习等。以下是 TensorFlow 的详细教程,涵盖基础使用方法和示例代码。 1. 安装与导入 安装 TensorFlow: pip install tensorflow…...

微信小程序按字母顺序渲染城市 功能实现详细讲解

在微信小程序功能搭建中,按字母渲染城市会用到多个ES6的方法,如reduce,map,Object.entries(),Object.keys() ,需要组合熟练掌握,才能优雅的处理数据完成渲染。 目录 一、数据分析 二、数据处理 …...

23省赛区块链应用与维护(房屋租凭【下】)

23省赛区块链应用与维护(房屋租凭) 背景描述 随着异地务工人员的增多,房屋租赁成为一个广阔市场。目前,现有技术中的房屋租赁是由房主发布租赁信息,租赁信息发布在房屋中介或租赁软件,租客获取租赁信息后,现场看房,并签订纸质的房屋租赁合同,房屋租赁费用通过中介或…...

数据结构-图-领接表存储

一、了解图的领接表存储 1、定义与结构 定义:邻接表是图的一种链式存储结构,它通过链表将每个顶点与其相邻的顶点连接起来。 结构: 顶点表:通常使用一个数组来存储图的顶点信息,数组的每个元素对应一个顶点&#xff…...

快速入门web安全

一.确定初衷 1.我真的喜欢搞安全吗? 2.我只是想通过安全赚钱钱吗? 3.我不知道做什么就是随便。 4.一辈子做信息安全吗 这些不想清楚会对你以后的发展很不利,与其盲目的学习web安全,不如先做一个长远的计划。 否则在我看来都是浪费时间。如果你考虑好了…...

rabbitMq两种消费应答失败处理方式

在rabbitMq消费端,有三种应答模式: none:不处理。即消息投递给消费者后立刻 ack 消息会立刻从MQ删除。非常不安全,不建议使用 manual:手动模式。需要自己在业务代码中调用api,发送 ack 或 reject&#xff…...

Qt C++(一) 5.12安装+运行第一个项目

安装 1. Download Qt OSS: Get Qt Online Installer 在该链接中下载qt在线安装程序 2. 安装时候,注意关键一步,archive是存档的意思,可以找到旧的版本, 比如5.12 3. 注意组件没必要全选,否则需要安装50个g, 经过请教…...

【RISC-V CPU Debug 专栏 1 -- RISC-V debug 规范】

文章目录 RISC-V Debug调试用例支持的功能限制和不包括的内容RISC-V 调试架构的主要组件用户与调试主机调试翻译器调试传输硬件调试传输模块(DTM)调试模块(DM)调试功能触发模块版本介绍RISC-V Debug RISC-V 调试规范为 RISC-V 处理器提供了一套标准化的调试接口和功能,旨…...

使用Gradle编译前端的项目

使用Gradle编译前端的项目 前言项目结构根项目(parent-project)的 settings.gradle.kts后端项目(backend)的 build.gradle.kts前端项目(frontend)的 build.gradle.kts打包bootJar 前言 最近的项目都是使用…...

网络爬虫——常见问题与调试技巧

在开发网络爬虫的过程中,开发者常常会遇到各种问题,例如网页加载失败、数据提取错误、反爬机制限制等。以下内容将结合实际经验和技术方案,详细介绍解决常见错误的方法,以及如何高效调试和优化爬虫代码。 1. 爬虫过程中常见的错误…...

【AI绘画】Midjourney进阶:色调详解(下)

博客主页: [小ᶻ☡꙳ᵃⁱᵍᶜ꙳] 本文专栏: AI绘画 | Midjourney 文章目录 💯前言💯Midjourney中的色彩控制为什么要控制色彩?为什么要在Midjourney中控制色彩? 💯色调纯色调灰色调暗色调 &#x1f4af…...

springboot+redis+lua实现分布式锁

1 分布式锁 Java锁能保证一个JVM进程里多个线程交替使用资源。而分布式锁保证多个JVM进程有序交替使用资源,保证数据的完整性和一致性。 分布式锁要求 互斥。一个资源在某个时刻只能被一个线程访问。避免死锁。避免某个线程异常情况不释放资源,造成死锁…...

【Petri网导论学习笔记】Petri网导论入门学习(十一) —— 3.3 变迁发生序列与Petri网语言

目录 3.3 变迁发生序列与Petri网语言定义 3.4定义 3.5定义 3.6定理 3.5例 3.9定义 3.7例 3.10定理 3.6定理 3.7 有界Petri网泵引理推论 3.5定义 3.9定理 3.8定义 3.10定义 3.11定义 3.12定理 3.93.3 变迁发生序列与Petri网语言 对于 Petri 网进行分析的另一种方法是考察网系统…...

docker-compose文件的简介及使用

Docker Compose是Docker官方的开源项目,主要用于定义和运行多容器Docker应用。以下是对Docker Compose的详细介绍: 一、主要功能: 容器编排:Docker Compose允许用户通过一个单独的docker-compose.yml模板文件(YAML格…...

[护网杯 2018]easy_tornado

这里有一个hint点进去看看,他说md5(cookie_secretmd5(filename)),所以我们需要获得cookie_secret的value 根据题目tornado,它可能是tornado的SSTI 这里吧filehash改为NULL. 是tornado的SSTI 输入{{handler.settings}} (settings 属性是一个字典&am…...

基于STM32的智能风扇控制系统

基于STM32的智能风扇控制系统 持续更新,欢迎关注!!! ** 基于STM32的智能风扇控制系统 ** 近几年,我国电风扇市场发展迅速,产品产出持续扩张,国家产业政策鼓励电风扇产业向高技术产品方向发展,国内企业新增投资项目投…...

决策树——基于乳腺癌数据集与cpu数据集实现

决策树——乳腺癌数据实现 4.1 训练决策树模型,并计算测试集的准确率 1. 读入数据 from sklearn import datasets from sklearn.tree import DecisionTreeClassifier from sklearn.model_selection import train_test_split from sklearn.metrics import confusion_matrix …...

探索空间自相关:揭示地理数据中的隐藏模式

目录 一、什么是空间自相关? 类型 二、空间自相关的数学基础 空间加权矩阵 三、度量空间自相关的方法 1. 全局自相关 2. 局部自相关 四、空间自相关的实际应用 五、Python实现空间自相关分析 1. 数据准备 2. 计算莫兰指数 3. 局部自相关(LISA 分析&…...

echarts使用示例

柱状图折线图 折柱混合:https://echarts.apache.org/examples/zh/editor.html?cmix-line-bar option {title:{show: true},tooltip: {trigger: axis,axisPointer: {type: cross,crossStyle: {color: #999}}},toolbox: {feature: {dataView: { show: true, readOnl…...

Flink高可用配置(HA)

从Flink架构中我们可以看到,JobManager这个组件非常重要,是中心协调器,负责任务调度和资源管理。默认情况下,每个Flink集群只有一个JobManager实例。这会产生单点故障(SPOF):如果JobManager崩溃,则无法提交新程序,正在运行的程序也会失败。通过JobManager的高可用性,…...

铭豹扩展坞 USB转网口 突然无法识别解决方法

当 USB 转网口扩展坞在一台笔记本上无法识别,但在其他电脑上正常工作时,问题通常出在笔记本自身或其与扩展坞的兼容性上。以下是系统化的定位思路和排查步骤,帮助你快速找到故障原因: 背景: 一个M-pard(铭豹)扩展坞的网卡突然无法识别了,扩展出来的三个USB接口正常。…...

智慧医疗能源事业线深度画像分析(上)

引言 医疗行业作为现代社会的关键基础设施,其能源消耗与环境影响正日益受到关注。随着全球"双碳"目标的推进和可持续发展理念的深入,智慧医疗能源事业线应运而生,致力于通过创新技术与管理方案,重构医疗领域的能源使用模式。这一事业线融合了能源管理、可持续发…...

python打卡day49

知识点回顾: 通道注意力模块复习空间注意力模块CBAM的定义 作业:尝试对今天的模型检查参数数目,并用tensorboard查看训练过程 import torch import torch.nn as nn# 定义通道注意力 class ChannelAttention(nn.Module):def __init__(self,…...

在HarmonyOS ArkTS ArkUI-X 5.0及以上版本中,手势开发全攻略:

在 HarmonyOS 应用开发中,手势交互是连接用户与设备的核心纽带。ArkTS 框架提供了丰富的手势处理能力,既支持点击、长按、拖拽等基础单一手势的精细控制,也能通过多种绑定策略解决父子组件的手势竞争问题。本文将结合官方开发文档&#xff0c…...

蓝牙 BLE 扫描面试题大全(2):进阶面试题与实战演练

前文覆盖了 BLE 扫描的基础概念与经典问题蓝牙 BLE 扫描面试题大全(1):从基础到实战的深度解析-CSDN博客,但实际面试中,企业更关注候选人对复杂场景的应对能力(如多设备并发扫描、低功耗与高发现率的平衡)和前沿技术的…...

P3 QT项目----记事本(3.8)

3.8 记事本项目总结 项目源码 1.main.cpp #include "widget.h" #include <QApplication> int main(int argc, char *argv[]) {QApplication a(argc, argv);Widget w;w.show();return a.exec(); } 2.widget.cpp #include "widget.h" #include &q…...

Java 加密常用的各种算法及其选择

在数字化时代&#xff0c;数据安全至关重要&#xff0c;Java 作为广泛应用的编程语言&#xff0c;提供了丰富的加密算法来保障数据的保密性、完整性和真实性。了解这些常用加密算法及其适用场景&#xff0c;有助于开发者在不同的业务需求中做出正确的选择。​ 一、对称加密算法…...

NFT模式:数字资产确权与链游经济系统构建

NFT模式&#xff1a;数字资产确权与链游经济系统构建 ——从技术架构到可持续生态的范式革命 一、确权技术革新&#xff1a;构建可信数字资产基石 1. 区块链底层架构的进化 跨链互操作协议&#xff1a;基于LayerZero协议实现以太坊、Solana等公链资产互通&#xff0c;通过零知…...

初学 pytest 记录

安装 pip install pytest用例可以是函数也可以是类中的方法 def test_func():print()class TestAdd: # def __init__(self): 在 pytest 中不可以使用__init__方法 # self.cc 12345 pytest.mark.api def test_str(self):res add(1, 2)assert res 12def test_int(self):r…...

【分享】推荐一些办公小工具

1、PDF 在线转换 https://smallpdf.com/cn/pdf-tools 推荐理由&#xff1a;大部分的转换软件需要收费&#xff0c;要么功能不齐全&#xff0c;而开会员又用不了几次浪费钱&#xff0c;借用别人的又不安全。 这个网站它不需要登录或下载安装。而且提供的免费功能就能满足日常…...