当前位置: 首页 > news >正文

2008年IMO几何预选题第3题

设有两个圆凸内接四边形 A B Q D ABQD ABQD B P Q C BPQC BPQC, 在线段 P Q PQ PQ 上存在一点 E E E, 使得, ∠ E A P = ∠ E D Q \angle EAP=\angle EDQ EAP=EDQ, ∠ E B P = ∠ E C Q \angle EBP=\angle ECQ EBP=ECQ. 求证: A A A, B B B, C C C, D D D 四点共圆.

在这里插入图片描述

证明:

在这里插入图片描述

B C BC BC, P Q PQ PQ 交于 I I I. 设直线 B P BP BP C Q CQ CQ 交于点 J J J.
P I / Q I = C Q / C J ⋅ B J / P B = B J / C J ⋅ C Q / P B PI/ QI=CQ/CJ \cdot BJ/PB = BJ/CJ \cdot CQ/PB PI/QI=CQ/CJBJ/PB=BJ/CJCQ/PB
显然 △ J B Q ∼ △ J C P \triangle JBQ \sim \triangle JCP JBQJCP
B J / C J = B Q / C P BJ/CJ=BQ/CP BJ/CJ=BQ/CP
P I / Q I = B Q / C P ⋅ C Q / P B = B Q / B P ⋅ C Q / C P PI/ QI=BQ/CP \cdot CQ/PB=BQ/BP \cdot CQ/CP PI/QI=BQ/CPCQ/PB=BQ/BPCQ/CP
B Q / B P = S △ B Q E / S △ B P E ⋅ sin ⁡ ∠ E B Q / sin ⁡ ∠ E B P = E Q / E P ⋅ sin ⁡ ∠ E B Q / sin ⁡ ∠ E B P BQ/BP=S_{\triangle BQE}/S_{\triangle BPE} \cdot \sin \angle EBQ/\sin \angle EBP=EQ/EP \cdot \sin \angle EBQ/\sin \angle EBP BQ/BP=SBQE/SBPEsinEBQ/sinEBP=EQ/EPsinEBQ/sinEBP
类似地, 可知 C Q / C P = E Q / E P ⋅ sin ⁡ P C E / sin ⁡ ∠ Q C E CQ/CP= EQ/EP \cdot \sin PCE/\sin \angle QCE CQ/CP=EQ/EPsinPCE/sinQCE.
代入得, P I / Q I = ( E Q / E P ) 2 PI/ QI=(EQ/EP)^2 PI/QI=(EQ/EP)2
A D AD AD, P Q PQ PQ 交于 I ′ I' I, 可类似地求出 P I ′ / Q I ′ = ( E Q / E P ) 2 PI'/ QI'=(EQ/EP)^2 PI/QI=(EQ/EP)2, 因此 I I I I ′ I' I 重合
I B ⋅ I C = I P ⋅ I Q = I A ⋅ I D IB \cdot IC=IP \cdot IQ=IA \cdot ID IBIC=IPIQ=IAID, 因此 A A A, B B B, C C C, D D D 四点共圆.
证毕.

拓展, 延长 E P EP EP, E L EL EL, 分别交 ( J P Q ) (JPQ) (JPQ) 于点 K K K, L L L. 则 K L / / P Q KL//PQ KL//PQ. 证明略.
在这里插入图片描述

整理时间: 2024年11月30日.

相关文章:

2008年IMO几何预选题第3题

设有两个圆凸内接四边形 A B Q D ABQD ABQD 和 B P Q C BPQC BPQC, 在线段 P Q PQ PQ 上存在一点 E E E, 使得, ∠ E A P ∠ E D Q \angle EAP\angle EDQ ∠EAP∠EDQ, ∠ E B P ∠ E C Q \angle EBP\angle ECQ ∠EBP∠ECQ. 求证: A A A, B B B, C C C, D D D 四点共…...

NAT拓展

NAT ALG(NAT应用级网) 为某些应用层协议,因为其报文内容可能携带IP相关信息,而普通NAT转化无法将这些IP转化,从而导致协议无法正常运行 例如FTP,DHCP,RSTP,ICMP,IPSEC…...

Flink四大基石之State

State state 可以理解为-- 历史计算结果 有状态计算和无状态计算 无状态计算: 不需要考虑历史数据, 相同的输入,得到相同的输出!如:map, 将每个单词记为1, 进来一个hello, 得到(hello,1),再进来一个hello,得到的还是(hello,1) 有状态计算: 需要考虑历史数据, 相同的输入,可…...

Spacy小笔记:zh_core_web_trf、zh_core_web_lg、zh_core_web_md 和 zh_core_web_sm区别

Spacy小笔记 最近频繁用到spacy,就小记一下。 2024.11.29 zh_core_web_trf、zh_core_web_lg、zh_core_web_md 和 zh_core_web_sm区别 首先,它们都是预训练的中文模型: zh_core_web_trf:395M 架构: 基于 Transformer 架构(bert…...

第六届智能控制、测量与信号处理国际学术会议 (ICMSP 2024)

重要信息 2024年11月29日-12月1日 中国陕西西安石油大学雁塔校区 大会官网:www.icmsp.net 大会简介 第六届智能控制、测量与信号处理国际学术会议(ICMSP 2024)由西安石油大学、中海油田服务股份有限公司、浙江水利水电学院与中国石油装备…...

docker服务容器化

docker服务容器化 1 引言2 多个容器间网络联通2.1 单独创建关联2.2 创建时关联 3 服务搭建3.1 镜像清单3.2 容器创建 4 联合实战4.2 flink_sql之kafka到starrocks4.2 flink_sql之mysql到starrocks 5 文献借鉴 1 引言 ​ 利用docker可以很效率地搭建服务,本文在win1…...

【QT】控件8

1.QDial 通过调节旋钮位置来控制窗口的不透明度&#xff1a; void Widget::on_dial_valueChanged(int value) {qDebug()<<value;this->setWindowOpacity((double)value/100); }效果演示&#xff1a; 2.Date/Time Edit 计算两个日期的差值 ui界面设计 计算按钮按下…...

漫谈推理谬误——错误因果

相关文章 漫谈推理谬误——错误假设-CSDN博客文章浏览阅读736次&#xff0c;点赞22次&#xff0c;收藏3次。在日常生活中&#xff0c;我们会面临各种逻辑推理&#xff0c;有些看起来一目了然&#xff0c;有些非常的科学严谨&#xff0c;但也有很多似是而非&#xff0c;隐藏了陷…...

【数据结构】队列实现剖析:掌握队列的底层实现

在计算机科学中&#xff0c;**队列&#xff08;Queue&#xff09;**是一种常见的数据结构&#xff0c;它遵循先进先出&#xff08;FIFO&#xff0c;First In First Out&#xff09;的原则。队列的应用非常广泛&#xff0c;例如任务调度、资源管理、进程通信等。本篇文章旨在为计…...

【C++】IO库(二):文件输入输出

8.2 文件输入输出 头文件 fstream 定义了三个类型来之支持文件IO&#xff0c;分别是&#xff1a; ifstream&#xff1a;从一个给定文件读取数据&#xff1b;ofstream&#xff1a;向一个给定文件写入数据&#xff1b;fstream&#xff1a;读写给定文件。 在 C 当中&#xff0c…...

105.【C语言】数据结构之二叉树求总节点和第K层节点的个数

目录 1.求二叉树总的节点的个数 1.容易想到的方法 代码 缺陷 思考:能否在TreeSize函数内定义静态变量解决size的问题呢? 其他写法 运行结果 2.最好的方法:分而治之 代码 运行结果 2.求二叉树第K层节点的个数 错误代码 运行结果 修正 运行结果 其他写法 1.求二…...

力扣637. 二叉树的层平均值

给定一个非空二叉树的根节点 root , 以数组的形式返回每一层节点的平均值。与实际答案相差 10-5 以内的答案可以被接受。 提示&#xff1a; 树中节点数量在 [1, 104] 范围内-231 < Node.val < 231 - 1 代码&#xff1a; /*** Definition for a binary tree node.* stru…...

【前端】Next.js 服务器端渲染(SSR)与客户端渲染(CSR)的最佳实践

关于Next.js 服务器端渲染&#xff08;SSR&#xff09;与客户端渲染&#xff08;CSR&#xff09;的实践内容方面&#xff0c;我们按下面几点进行阐述。 1. 原理 服务器端渲染 (SSR): 在服务器上生成完整的HTML页面&#xff0c;然后发送给客户端。这使得用户在首次访问时能够…...

路径规划之启发式算法之一:A-Star(A*)算法

A*算法是一种启发式搜索算法&#xff0c;常用于解决路径规划问题。 一、A*算法的定义与原理 A*算法是一种用于在图形或网格中查找最短路径的算法。它在搜索过程中综合考虑了每个节点的实际距离&#xff08;g值&#xff09;和预估距离&#xff08;h值&#xff09;&#xff0c;以…...

Android复习代码1-4章

public class RudioButton extends AppCompatActivity {Overrideprotected void onCreate(Nullable Bundle savedInstanceState) {super.onCreate(savedInstanceState);setContentView(R.layout.activity_rudio_button);// 找到RadioGroup和TextView的实例RadioGroup radioGrou…...

【问题】webdriver.Chrome()设置参数executable_path报不存在

场景1: 标红报错unresolved reference executable_path 场景2: 执行报错TypeError: __init__() got an unexpected keyword argument executable_path 原因&#xff1a; 上述两种场景是因为selenium4开始不再支持某些初始化参数。比如executable_path 解决&#xff1a; 方案…...

win10系统安装docker-desktop

1、开启Hyper-v ———————————————— Hyper-V 是微软提供的一种虚拟化技术&#xff0c;它允许你在同一台物理计算机上运行多个独立的操作系统实例。这种技术主要用于开发、测试、以及服务器虚拟化等领域。 —————————————————————— &#…...

小程序-基于java+SpringBoot+Vue的乡村研学旅行平台设计与实现

项目运行 1.运行环境&#xff1a;最好是java jdk 1.8&#xff0c;我们在这个平台上运行的。其他版本理论上也可以。 2.IDE环境&#xff1a;IDEA&#xff0c;Eclipse,Myeclipse都可以。推荐IDEA; 3.tomcat环境&#xff1a;Tomcat 7.x,8.x,9.x版本均可 4.硬件环境&#xff1a…...

组件A底部栏(position: fixed )事件使用$emit更新内容失败bug解决

今天遇到一个很离奇的bug&#xff0c;记录一下 问题&#xff1a;在组件内底部栏使用$emit触发按钮事件但打印出来的值是初始化的值&#xff0c;更新的值被重置导致更新失败 原因&#xff1a;组件内底部使用了 position: fixed; 固定&#xff0c; 导致组件内插槽 this 与 保存按…...

数据结构——排序第三幕(深究快排(非递归实现)、快排的优化、内省排序,排序总结)超详细!!!!

文章目录 前言一、非递归实现快排二、快排的优化版本三、内省排序四、排序算法复杂度以及稳定性的分析总结 前言 继上一篇博客基于递归的方式学习了快速排序和归并排序 今天我们来深究快速排序&#xff0c;使用栈的数据结构非递归实现快排&#xff0c;优化快排&#xff08;三路…...

UE5 学习系列(二)用户操作界面及介绍

这篇博客是 UE5 学习系列博客的第二篇&#xff0c;在第一篇的基础上展开这篇内容。博客参考的 B 站视频资料和第一篇的链接如下&#xff1a; 【Note】&#xff1a;如果你已经完成安装等操作&#xff0c;可以只执行第一篇博客中 2. 新建一个空白游戏项目 章节操作&#xff0c;重…...

CMake基础:构建流程详解

目录 1.CMake构建过程的基本流程 2.CMake构建的具体步骤 2.1.创建构建目录 2.2.使用 CMake 生成构建文件 2.3.编译和构建 2.4.清理构建文件 2.5.重新配置和构建 3.跨平台构建示例 4.工具链与交叉编译 5.CMake构建后的项目结构解析 5.1.CMake构建后的目录结构 5.2.构…...

多模态商品数据接口:融合图像、语音与文字的下一代商品详情体验

一、多模态商品数据接口的技术架构 &#xff08;一&#xff09;多模态数据融合引擎 跨模态语义对齐 通过Transformer架构实现图像、语音、文字的语义关联。例如&#xff0c;当用户上传一张“蓝色连衣裙”的图片时&#xff0c;接口可自动提取图像中的颜色&#xff08;RGB值&…...

TRS收益互换:跨境资本流动的金融创新工具与系统化解决方案

一、TRS收益互换的本质与业务逻辑 &#xff08;一&#xff09;概念解析 TRS&#xff08;Total Return Swap&#xff09;收益互换是一种金融衍生工具&#xff0c;指交易双方约定在未来一定期限内&#xff0c;基于特定资产或指数的表现进行现金流交换的协议。其核心特征包括&am…...

《基于Apache Flink的流处理》笔记

思维导图 1-3 章 4-7章 8-11 章 参考资料 源码&#xff1a; https://github.com/streaming-with-flink 博客 https://flink.apache.org/bloghttps://www.ververica.com/blog 聚会及会议 https://flink-forward.orghttps://www.meetup.com/topics/apache-flink https://n…...

深入解析C++中的extern关键字:跨文件共享变量与函数的终极指南

&#x1f680; C extern 关键字深度解析&#xff1a;跨文件编程的终极指南 &#x1f4c5; 更新时间&#xff1a;2025年6月5日 &#x1f3f7;️ 标签&#xff1a;C | extern关键字 | 多文件编程 | 链接与声明 | 现代C 文章目录 前言&#x1f525;一、extern 是什么&#xff1f;&…...

vue3+vite项目中使用.env文件环境变量方法

vue3vite项目中使用.env文件环境变量方法 .env文件作用命名规则常用的配置项示例使用方法注意事项在vite.config.js文件中读取环境变量方法 .env文件作用 .env 文件用于定义环境变量&#xff0c;这些变量可以在项目中通过 import.meta.env 进行访问。Vite 会自动加载这些环境变…...

基于matlab策略迭代和值迭代法的动态规划

经典的基于策略迭代和值迭代法的动态规划matlab代码&#xff0c;实现机器人的最优运输 Dynamic-Programming-master/Environment.pdf , 104724 Dynamic-Programming-master/README.md , 506 Dynamic-Programming-master/generalizedPolicyIteration.m , 1970 Dynamic-Programm…...

GitFlow 工作模式(详解)

今天再学项目的过程中遇到使用gitflow模式管理代码&#xff0c;因此进行学习并且发布关于gitflow的一些思考 Git与GitFlow模式 我们在写代码的时候通常会进行网上保存&#xff0c;无论是github还是gittee&#xff0c;都是一种基于git去保存代码的形式&#xff0c;这样保存代码…...

【Linux】Linux安装并配置RabbitMQ

目录 1. 安装 Erlang 2. 安装 RabbitMQ 2.1.添加 RabbitMQ 仓库 2.2.安装 RabbitMQ 3.配置 3.1.启动和管理服务 4. 访问管理界面 5.安装问题 6.修改密码 7.修改端口 7.1.找到文件 7.2.修改文件 1. 安装 Erlang 由于 RabbitMQ 是用 Erlang 编写的&#xff0c;需要先安…...