当前位置: 首页 > news >正文

2008年IMO几何预选题第3题

设有两个圆凸内接四边形 A B Q D ABQD ABQD B P Q C BPQC BPQC, 在线段 P Q PQ PQ 上存在一点 E E E, 使得, ∠ E A P = ∠ E D Q \angle EAP=\angle EDQ EAP=EDQ, ∠ E B P = ∠ E C Q \angle EBP=\angle ECQ EBP=ECQ. 求证: A A A, B B B, C C C, D D D 四点共圆.

在这里插入图片描述

证明:

在这里插入图片描述

B C BC BC, P Q PQ PQ 交于 I I I. 设直线 B P BP BP C Q CQ CQ 交于点 J J J.
P I / Q I = C Q / C J ⋅ B J / P B = B J / C J ⋅ C Q / P B PI/ QI=CQ/CJ \cdot BJ/PB = BJ/CJ \cdot CQ/PB PI/QI=CQ/CJBJ/PB=BJ/CJCQ/PB
显然 △ J B Q ∼ △ J C P \triangle JBQ \sim \triangle JCP JBQJCP
B J / C J = B Q / C P BJ/CJ=BQ/CP BJ/CJ=BQ/CP
P I / Q I = B Q / C P ⋅ C Q / P B = B Q / B P ⋅ C Q / C P PI/ QI=BQ/CP \cdot CQ/PB=BQ/BP \cdot CQ/CP PI/QI=BQ/CPCQ/PB=BQ/BPCQ/CP
B Q / B P = S △ B Q E / S △ B P E ⋅ sin ⁡ ∠ E B Q / sin ⁡ ∠ E B P = E Q / E P ⋅ sin ⁡ ∠ E B Q / sin ⁡ ∠ E B P BQ/BP=S_{\triangle BQE}/S_{\triangle BPE} \cdot \sin \angle EBQ/\sin \angle EBP=EQ/EP \cdot \sin \angle EBQ/\sin \angle EBP BQ/BP=SBQE/SBPEsinEBQ/sinEBP=EQ/EPsinEBQ/sinEBP
类似地, 可知 C Q / C P = E Q / E P ⋅ sin ⁡ P C E / sin ⁡ ∠ Q C E CQ/CP= EQ/EP \cdot \sin PCE/\sin \angle QCE CQ/CP=EQ/EPsinPCE/sinQCE.
代入得, P I / Q I = ( E Q / E P ) 2 PI/ QI=(EQ/EP)^2 PI/QI=(EQ/EP)2
A D AD AD, P Q PQ PQ 交于 I ′ I' I, 可类似地求出 P I ′ / Q I ′ = ( E Q / E P ) 2 PI'/ QI'=(EQ/EP)^2 PI/QI=(EQ/EP)2, 因此 I I I I ′ I' I 重合
I B ⋅ I C = I P ⋅ I Q = I A ⋅ I D IB \cdot IC=IP \cdot IQ=IA \cdot ID IBIC=IPIQ=IAID, 因此 A A A, B B B, C C C, D D D 四点共圆.
证毕.

拓展, 延长 E P EP EP, E L EL EL, 分别交 ( J P Q ) (JPQ) (JPQ) 于点 K K K, L L L. 则 K L / / P Q KL//PQ KL//PQ. 证明略.
在这里插入图片描述

整理时间: 2024年11月30日.

相关文章:

2008年IMO几何预选题第3题

设有两个圆凸内接四边形 A B Q D ABQD ABQD 和 B P Q C BPQC BPQC, 在线段 P Q PQ PQ 上存在一点 E E E, 使得, ∠ E A P ∠ E D Q \angle EAP\angle EDQ ∠EAP∠EDQ, ∠ E B P ∠ E C Q \angle EBP\angle ECQ ∠EBP∠ECQ. 求证: A A A, B B B, C C C, D D D 四点共…...

NAT拓展

NAT ALG(NAT应用级网) 为某些应用层协议,因为其报文内容可能携带IP相关信息,而普通NAT转化无法将这些IP转化,从而导致协议无法正常运行 例如FTP,DHCP,RSTP,ICMP,IPSEC…...

Flink四大基石之State

State state 可以理解为-- 历史计算结果 有状态计算和无状态计算 无状态计算: 不需要考虑历史数据, 相同的输入,得到相同的输出!如:map, 将每个单词记为1, 进来一个hello, 得到(hello,1),再进来一个hello,得到的还是(hello,1) 有状态计算: 需要考虑历史数据, 相同的输入,可…...

Spacy小笔记:zh_core_web_trf、zh_core_web_lg、zh_core_web_md 和 zh_core_web_sm区别

Spacy小笔记 最近频繁用到spacy,就小记一下。 2024.11.29 zh_core_web_trf、zh_core_web_lg、zh_core_web_md 和 zh_core_web_sm区别 首先,它们都是预训练的中文模型: zh_core_web_trf:395M 架构: 基于 Transformer 架构(bert…...

第六届智能控制、测量与信号处理国际学术会议 (ICMSP 2024)

重要信息 2024年11月29日-12月1日 中国陕西西安石油大学雁塔校区 大会官网:www.icmsp.net 大会简介 第六届智能控制、测量与信号处理国际学术会议(ICMSP 2024)由西安石油大学、中海油田服务股份有限公司、浙江水利水电学院与中国石油装备…...

docker服务容器化

docker服务容器化 1 引言2 多个容器间网络联通2.1 单独创建关联2.2 创建时关联 3 服务搭建3.1 镜像清单3.2 容器创建 4 联合实战4.2 flink_sql之kafka到starrocks4.2 flink_sql之mysql到starrocks 5 文献借鉴 1 引言 ​ 利用docker可以很效率地搭建服务,本文在win1…...

【QT】控件8

1.QDial 通过调节旋钮位置来控制窗口的不透明度&#xff1a; void Widget::on_dial_valueChanged(int value) {qDebug()<<value;this->setWindowOpacity((double)value/100); }效果演示&#xff1a; 2.Date/Time Edit 计算两个日期的差值 ui界面设计 计算按钮按下…...

漫谈推理谬误——错误因果

相关文章 漫谈推理谬误——错误假设-CSDN博客文章浏览阅读736次&#xff0c;点赞22次&#xff0c;收藏3次。在日常生活中&#xff0c;我们会面临各种逻辑推理&#xff0c;有些看起来一目了然&#xff0c;有些非常的科学严谨&#xff0c;但也有很多似是而非&#xff0c;隐藏了陷…...

【数据结构】队列实现剖析:掌握队列的底层实现

在计算机科学中&#xff0c;**队列&#xff08;Queue&#xff09;**是一种常见的数据结构&#xff0c;它遵循先进先出&#xff08;FIFO&#xff0c;First In First Out&#xff09;的原则。队列的应用非常广泛&#xff0c;例如任务调度、资源管理、进程通信等。本篇文章旨在为计…...

【C++】IO库(二):文件输入输出

8.2 文件输入输出 头文件 fstream 定义了三个类型来之支持文件IO&#xff0c;分别是&#xff1a; ifstream&#xff1a;从一个给定文件读取数据&#xff1b;ofstream&#xff1a;向一个给定文件写入数据&#xff1b;fstream&#xff1a;读写给定文件。 在 C 当中&#xff0c…...

105.【C语言】数据结构之二叉树求总节点和第K层节点的个数

目录 1.求二叉树总的节点的个数 1.容易想到的方法 代码 缺陷 思考:能否在TreeSize函数内定义静态变量解决size的问题呢? 其他写法 运行结果 2.最好的方法:分而治之 代码 运行结果 2.求二叉树第K层节点的个数 错误代码 运行结果 修正 运行结果 其他写法 1.求二…...

力扣637. 二叉树的层平均值

给定一个非空二叉树的根节点 root , 以数组的形式返回每一层节点的平均值。与实际答案相差 10-5 以内的答案可以被接受。 提示&#xff1a; 树中节点数量在 [1, 104] 范围内-231 < Node.val < 231 - 1 代码&#xff1a; /*** Definition for a binary tree node.* stru…...

【前端】Next.js 服务器端渲染(SSR)与客户端渲染(CSR)的最佳实践

关于Next.js 服务器端渲染&#xff08;SSR&#xff09;与客户端渲染&#xff08;CSR&#xff09;的实践内容方面&#xff0c;我们按下面几点进行阐述。 1. 原理 服务器端渲染 (SSR): 在服务器上生成完整的HTML页面&#xff0c;然后发送给客户端。这使得用户在首次访问时能够…...

路径规划之启发式算法之一:A-Star(A*)算法

A*算法是一种启发式搜索算法&#xff0c;常用于解决路径规划问题。 一、A*算法的定义与原理 A*算法是一种用于在图形或网格中查找最短路径的算法。它在搜索过程中综合考虑了每个节点的实际距离&#xff08;g值&#xff09;和预估距离&#xff08;h值&#xff09;&#xff0c;以…...

Android复习代码1-4章

public class RudioButton extends AppCompatActivity {Overrideprotected void onCreate(Nullable Bundle savedInstanceState) {super.onCreate(savedInstanceState);setContentView(R.layout.activity_rudio_button);// 找到RadioGroup和TextView的实例RadioGroup radioGrou…...

【问题】webdriver.Chrome()设置参数executable_path报不存在

场景1: 标红报错unresolved reference executable_path 场景2: 执行报错TypeError: __init__() got an unexpected keyword argument executable_path 原因&#xff1a; 上述两种场景是因为selenium4开始不再支持某些初始化参数。比如executable_path 解决&#xff1a; 方案…...

win10系统安装docker-desktop

1、开启Hyper-v ———————————————— Hyper-V 是微软提供的一种虚拟化技术&#xff0c;它允许你在同一台物理计算机上运行多个独立的操作系统实例。这种技术主要用于开发、测试、以及服务器虚拟化等领域。 —————————————————————— &#…...

小程序-基于java+SpringBoot+Vue的乡村研学旅行平台设计与实现

项目运行 1.运行环境&#xff1a;最好是java jdk 1.8&#xff0c;我们在这个平台上运行的。其他版本理论上也可以。 2.IDE环境&#xff1a;IDEA&#xff0c;Eclipse,Myeclipse都可以。推荐IDEA; 3.tomcat环境&#xff1a;Tomcat 7.x,8.x,9.x版本均可 4.硬件环境&#xff1a…...

组件A底部栏(position: fixed )事件使用$emit更新内容失败bug解决

今天遇到一个很离奇的bug&#xff0c;记录一下 问题&#xff1a;在组件内底部栏使用$emit触发按钮事件但打印出来的值是初始化的值&#xff0c;更新的值被重置导致更新失败 原因&#xff1a;组件内底部使用了 position: fixed; 固定&#xff0c; 导致组件内插槽 this 与 保存按…...

数据结构——排序第三幕(深究快排(非递归实现)、快排的优化、内省排序,排序总结)超详细!!!!

文章目录 前言一、非递归实现快排二、快排的优化版本三、内省排序四、排序算法复杂度以及稳定性的分析总结 前言 继上一篇博客基于递归的方式学习了快速排序和归并排序 今天我们来深究快速排序&#xff0c;使用栈的数据结构非递归实现快排&#xff0c;优化快排&#xff08;三路…...

[特殊字符] 智能合约中的数据是如何在区块链中保持一致的?

&#x1f9e0; 智能合约中的数据是如何在区块链中保持一致的&#xff1f; 为什么所有区块链节点都能得出相同结果&#xff1f;合约调用这么复杂&#xff0c;状态真能保持一致吗&#xff1f;本篇带你从底层视角理解“状态一致性”的真相。 一、智能合约的数据存储在哪里&#xf…...

树莓派超全系列教程文档--(61)树莓派摄像头高级使用方法

树莓派摄像头高级使用方法 配置通过调谐文件来调整相机行为 使用多个摄像头安装 libcam 和 rpicam-apps依赖关系开发包 文章来源&#xff1a; http://raspberry.dns8844.cn/documentation 原文网址 配置 大多数用例自动工作&#xff0c;无需更改相机配置。但是&#xff0c;一…...

golang循环变量捕获问题​​

在 Go 语言中&#xff0c;当在循环中启动协程&#xff08;goroutine&#xff09;时&#xff0c;如果在协程闭包中直接引用循环变量&#xff0c;可能会遇到一个常见的陷阱 - ​​循环变量捕获问题​​。让我详细解释一下&#xff1a; 问题背景 看这个代码片段&#xff1a; fo…...

Java线上CPU飙高问题排查全指南

一、引言 在Java应用的线上运行环境中&#xff0c;CPU飙高是一个常见且棘手的性能问题。当系统出现CPU飙高时&#xff0c;通常会导致应用响应缓慢&#xff0c;甚至服务不可用&#xff0c;严重影响用户体验和业务运行。因此&#xff0c;掌握一套科学有效的CPU飙高问题排查方法&…...

Python 包管理器 uv 介绍

Python 包管理器 uv 全面介绍 uv 是由 Astral&#xff08;热门工具 Ruff 的开发者&#xff09;推出的下一代高性能 Python 包管理器和构建工具&#xff0c;用 Rust 编写。它旨在解决传统工具&#xff08;如 pip、virtualenv、pip-tools&#xff09;的性能瓶颈&#xff0c;同时…...

基于Java Swing的电子通讯录设计与实现:附系统托盘功能代码详解

JAVASQL电子通讯录带系统托盘 一、系统概述 本电子通讯录系统采用Java Swing开发桌面应用&#xff0c;结合SQLite数据库实现联系人管理功能&#xff0c;并集成系统托盘功能提升用户体验。系统支持联系人的增删改查、分组管理、搜索过滤等功能&#xff0c;同时可以最小化到系统…...

【FTP】ftp文件传输会丢包吗?批量几百个文件传输,有一些文件没有传输完整,如何解决?

FTP&#xff08;File Transfer Protocol&#xff09;本身是一个基于 TCP 的协议&#xff0c;理论上不会丢包。但 FTP 文件传输过程中仍可能出现文件不完整、丢失或损坏的情况&#xff0c;主要原因包括&#xff1a; ✅ 一、FTP传输可能“丢包”或文件不完整的原因 原因描述网络…...

WEB3全栈开发——面试专业技能点P4数据库

一、mysql2 原生驱动及其连接机制 概念介绍 mysql2 是 Node.js 环境中广泛使用的 MySQL 客户端库&#xff0c;基于 mysql 库改进而来&#xff0c;具有更好的性能、Promise 支持、流式查询、二进制数据处理能力等。 主要特点&#xff1a; 支持 Promise / async-await&#xf…...

[拓扑优化] 1.概述

常见的拓扑优化方法有&#xff1a;均匀化法、变密度法、渐进结构优化法、水平集法、移动可变形组件法等。 常见的数值计算方法有&#xff1a;有限元法、有限差分法、边界元法、离散元法、无网格法、扩展有限元法、等几何分析等。 将上述数值计算方法与拓扑优化方法结合&#…...

window 显示驱动开发-如何查询视频处理功能(三)

​D3DDDICAPS_GETPROCAMPRANGE请求类型 UMD 返回指向 DXVADDI_VALUERANGE 结构的指针&#xff0c;该结构包含特定视频流上特定 ProcAmp 控件属性允许的值范围。 Direct3D 运行时在D3DDDIARG_GETCAPS的 pInfo 成员指向的变量中为特定视频流的 ProcAmp 控件属性指定DXVADDI_QUER…...