KAN-Transfomer——基于新型神经网络KAN的时间序列预测
1.数据集介绍
ETT(电变压器温度):由两个小时级数据集(ETTh)和两个 15 分钟级数据集(ETTm)组成。它们中的每一个都包含 2016 年 7 月至 2018 年 7 月的七种石油和电力变压器的负载特征。
traffic(交通) :描述了道路占用率。它包含 2015 年至 2016 年旧金山高速公路传感器记录的每小时数据
electrity(电力):从 2012 年到 2014 年收集了 321 个客户每小时电力消耗。
exchange_rate(汇率):收集了 1990 年至 2016 年 8 个国家的每日汇率。
Weather:包括 21 个天气指标,例如空气温度和湿度。它的数据在 2020 年的每 10 分钟记录一次。
ILLNESS:描述了患有流感疾病的患者与患者数量的比率。它包括 2002 年至 2021 年美国疾病控制和预防中心每周数据。
数据集链接:
https://drive.google.com/drive/folders/1ZOYpTUa82_jCcxIdTmyr0LXQfvaM9vIy

参考文献:
[1]https://arxiv.org/abs/2407.05278
2. 处理方法
(1)方法
KAN(Kolmogorov–Arnold Networks)模块负责初始特征提取。KAN是一种针对时间序列的有效特征提取模块,可以帮助模型在更高维度上理解输入特征。Transformer使用编码器和解码器,编码器和解码器部分通过自注意力机制捕捉时间序列中的长程依赖,并实现信息在不同时间步间的高效传播。最后通过嵌入层和全连接层将输入和输出进行维度转换,实现特征的高效表达与映射。
·KAN
KAN 的核心是学习给定问题的组合结构(外部自由度)和单变量函数(内部自由度)。这使得 KAN 不仅可以像 MLP 一样学习特征,还可以非常准确地优化这些学习到的特征。KAN 利用了样条曲线和 MLP 的优点,同时避免了它们的缺点。样条对于低维函数来说是准确的,并且可以轻松地进行局部调整,但会受到维数灾难的影响。另一方面,MLP 更擅长利用组合结构,但难以优化单变量函数。通过结合这两种方法,KAN 可以比单独的样条曲线或 MLP 更有效地学习和准确地表示复杂函数。

·Transformer

(2)实验结果
训练集、验证集和测试集划分设置为6:2:2,实验参数设置如下:
parser = argparse.ArgumentParser(description='KAN')
parser.add_argument('--look_back', type=int, default='10', help='历史look_back步,修改这里也要修改model的look_back')
parser.add_argument('--T', type=int, default='1', help='预测未来的T步,修改这里也要修改model的T')
parser.add_argument('--epochs', type=int, default='300', help='训练轮数')
parser.add_argument('--batch_size', type=int, default='32', help='批大小')
parser.add_argument('--data_path', type=str, default='mydata/ETTm1.csv', help='文件路径')
parser.add_argument('--freq', type=str, default='15min', help='时间特征编码')# freq选项:[s:秒,t:分钟,h:小时,d:每天,b:工作日,w:每周,m:每月],也可以使用更详细的频率,如'15min'或'3h'
parser.add_argument('--num_features', type=int, default='6', help='数据一共多少个特征')
parser.add_argument('--target', type=str, default='OT', help='预测的目标变量')
parser.add_argument('--embed_dim', type=int, default='32', help='嵌入维度')
parser.add_argument('--dense_dim', type=int, default='128', help='隐藏层神经元个数')
parser.add_argument('--num_heads', type=int, default='4', help='头数')
parser.add_argument('--dropout_rate', type=float, default='0.1', help='失活率')
parser.add_argument('--num_blocks', type=int, default='2', help='编码器解码器数')
parser.add_argument('--learn_rate', type=float, default='0.001', help='学习率')args = parser.parse_args()
注:需根据数据集的特征进一步探索最合适的参数组合,以提升模型性能。
本文方法ETTm1数据集:


本文方法ETTh1数据集:


3. 代码下载
KAN-Transfomer——基于新型神经网络KAN的时间序列预测
最后:
小编会不定期发布相关设计内容包括但不限于如下内容:信号处理、通信仿真、算法设计、matlab appdesigner,gui设计、simulink仿真......希望能帮到你!

相关文章:
KAN-Transfomer——基于新型神经网络KAN的时间序列预测
1.数据集介绍 ETT(电变压器温度):由两个小时级数据集(ETTh)和两个 15 分钟级数据集(ETTm)组成。它们中的每一个都包含 2016 年 7 月至 2018 年 7 月的七种石油和电力变压器的负载特征。 traffic(交通) :描…...
鸿蒙学习自由流转与分布式运行环境-价值与架构定义(1)
文章目录 价值与架构定义1、价值2、架构定义 随着个人设备数量越来越多,跨多个设备间的交互将成为常态。基于传统 OS 开发跨设备交互的应用程序时,需要解决设备发现、设备认证、设备连接、数据同步等技术难题,不但开发成本高,还存…...
【k8s深入理解之 Scheme 补充-2】理解 register.go 暴露的 AddToScheme 函数
AddToScheme 函数 AddToScheme 就是为了对外暴露,方便别人调用,将当前Group组的信息注册到其 Scheme 中,以便了解该 Group 组的数据结构,用于后续处理 项目版本用途使用场景k8s.io/apiV1注册资源某一外部版本数据结构࿰…...
uni-app写的微信小程序每次换账号登录时出现缓存上一个账号数据的问题
uni-app写的微信小程序每次更换另外账号登录时出现缓存上一个账号数据的问题? 清除缓存数据:在 onShow 钩子中,我们将 powerStations、list 和 responseRoles 的值重置为初始状态,以清除之前的缓存数据。重新获取数据:…...
数据分析流程中的Lambda架构,以及数据湖基于Hadoop、Spark的实现
文章目录 一、Lambda架构1、Lambda的三层架构2、简单解释:3、Lambda架构的优缺点 二、数据湖基于Hadoop、Spark的实现1、架构2、数据管理(存储层的辅助功能) 一、Lambda架构 1、Lambda的三层架构 Batch View(批处理视图层&#…...
Android 原生解析 Json 字符串
Android 原生解析 JSON 字符串 1. JSON 基础2. Android 原生 JSON 解析方法2.1 解析 JSON 字符串到 JSONObject关键方法 2.2 解析 JSON 数组到 JSONArray关键方法 2.3 解析嵌套的 JSON 对象 3. 处理异常4. 总结 在 Android 开发中,我们经常需要从服务器获取 JSON 格…...
Windsurf可以上传图片开发UI了
背景 曾经羡慕Cursor的“画图”开发功能,这不Windsurf安排上了。 Upload Images to Cascade Cascade now supports uploading images on premium models Ask Cascade to build or tweak UI from on image upload New keybindings Keybindings to navigate betwe…...
Qt UI设计 菜单栏无法输入名字
在UI界面“在这里输入”,直接双击填写名称,无论是中文还是英文都没有反应。解决方案 2个: 1.双击“在这里输入之后”,在可编辑状态下,空格→enter键,然后在右下角属性框的title中直接填写中文或英文名&…...
blender 视频背景
准备视频文件 首先,确保你有想要用作背景的视频文件。视频格式最好是 Blender 能够很好兼容的,如 MP4 等常见格式。 创建一个新的 Blender 场景或打开现有场景 打开 Blender 软件后,你可以新建一个场景(通过点击 “文件” - “新建…...
【python】OpenCV—Tracking(10.5)—dlib
文章目录 1、功能描述2、代码实现3、效果展示4、完整代码5、涉及到的库函数dlib.correlation_tracker() 6、参考 1、功能描述 基于 dlib 库,实现指定类别的目标检测和单目标跟踪 2、代码实现 caffe 模型 https://github.com/MediosZ/MobileNet-SSD/tree/master/…...
音视频入门基础:MPEG2-TS专题(9)——FFmpeg源码中,解码TS Header的实现
一、引言 FFmpeg源码对MPEG2-TS传输流/TS文件解复用时,在通过read_packet函数读取出一个transport packet后,会调用handle_packet函数来处理该transport packet: static int handle_packets(MpegTSContext *ts, int64_t nb_packets) { //..…...
解决“磁盘已插上,但Windows系统无法识别“问题
电脑上有2块硬盘,一块是500GB的固态硬盘,另一块是1000GB的机械硬盘,按下开机键,发现500G的固态硬盘识别了,但1000GB的机械硬盘却无法识别。后面为了描述方便,将"500GB的固态硬盘"称为X盘…...
论文笔记-WWW2024-ClickPrompt
论文笔记-WWW2024-ClickPrompt: CTR Models are Strong Prompt Generators for Adapting Language Models to CTR Prediction ClickPrompt: CTR模型是大模型适配CTR预测任务的强大提示生成器摘要1.引言2.预备知识2.1传统CTR预测2.2基于PLM的CTR预测 3.方法3.1概述3.2模态转换3.…...
53 基于单片机的8路抢答器加记分
目录 一、主要功能 二、硬件资源 三、程序编程 四、实现现象 一、主要功能 首先有三个按键 分别为开始 暂停 复位,然后八个选手按键,开机显示四条杠,然后按一号选手按键,数码管显示30,这…...
【java数据结构】二叉树OJ题
【java数据结构】二叉树OJ题 一、检查两颗树是否相同二、另一颗树的子树三、翻转二叉树四、对称二叉树五、判断一颗二叉树是否是平衡二叉树六、给定一个二叉树, 找到该树中两个指定节点的最近公共祖先七、根据一棵树的前序遍历与中序遍历构造二叉树练习:八、二叉树前…...
IIC和SPI的时序图
SCL的变化快慢决定了通信速率,当SCL为低电平的时候,无论SDA是1还是0都不识别: ACK应答:当从设备为低电平的时候识别为从设备有应答: 谁接收,谁应答: 起始位和停止位: IIC的时序图&am…...
MySQL数据库表的操作
1、总述 今天我跟大家分享MySQL数据库中表的创建,查看,修改,删除。 2、创建表 create table table_name ( field1 datatype, field2 datatype, field3 datatype ) character set 字符集 collate 校验规则 engine 存储引擎; 说明࿱…...
.net core 创建linux服务,并实现服务的自我更新
目录 创建服务创建另一个服务,用于执行更新操作给你的用户配置一些systemctl命令权限 创建服务 /etc/systemd/system下新建服务配置文件:yourapp.service,内容如下: [Unit] Descriptionyourapp Afternetwork.target[Service] Ty…...
springboot338it职业生涯规划系统--论文pf(论文+源码)_kaic
毕 业 设 计(论 文) 题目:it职业生涯规划系统的设计与实现 摘 要 互联网发展至今,无论是其理论还是技术都已经成熟,而且它广泛参与在社会中的方方面面。它让信息都可以通过网络传播,搭配信息管理工具可以…...
oracle将select作为字段查询
在Oracle中,如果你想将一个SELECT语句作为字段的值,你可以使用子查询或者使用WITH子句(也称为公用表表达式CTE)。以下是两种方法的示例: 方法1:使用子查询 语法如下: SELECTcolumn1,(SELECT …...
简易版抽奖活动的设计技术方案
1.前言 本技术方案旨在设计一套完整且可靠的抽奖活动逻辑,确保抽奖活动能够公平、公正、公开地进行,同时满足高并发访问、数据安全存储与高效处理等需求,为用户提供流畅的抽奖体验,助力业务顺利开展。本方案将涵盖抽奖活动的整体架构设计、核心流程逻辑、关键功能实现以及…...
1.3 VSCode安装与环境配置
进入网址Visual Studio Code - Code Editing. Redefined下载.deb文件,然后打开终端,进入下载文件夹,键入命令 sudo dpkg -i code_1.100.3-1748872405_amd64.deb 在终端键入命令code即启动vscode 需要安装插件列表 1.Chinese简化 2.ros …...
论文浅尝 | 基于判别指令微调生成式大语言模型的知识图谱补全方法(ISWC2024)
笔记整理:刘治强,浙江大学硕士生,研究方向为知识图谱表示学习,大语言模型 论文链接:http://arxiv.org/abs/2407.16127 发表会议:ISWC 2024 1. 动机 传统的知识图谱补全(KGC)模型通过…...
MySQL 8.0 OCP 英文题库解析(十三)
Oracle 为庆祝 MySQL 30 周年,截止到 2025.07.31 之前。所有人均可以免费考取原价245美元的MySQL OCP 认证。 从今天开始,将英文题库免费公布出来,并进行解析,帮助大家在一个月之内轻松通过OCP认证。 本期公布试题111~120 试题1…...
蓝桥杯3498 01串的熵
问题描述 对于一个长度为 23333333的 01 串, 如果其信息熵为 11625907.5798, 且 0 出现次数比 1 少, 那么这个 01 串中 0 出现了多少次? #include<iostream> #include<cmath> using namespace std;int n 23333333;int main() {//枚举 0 出现的次数//因…...
MFC 抛体运动模拟:常见问题解决与界面美化
在 MFC 中开发抛体运动模拟程序时,我们常遇到 轨迹残留、无效刷新、视觉单调、物理逻辑瑕疵 等问题。本文将针对这些痛点,详细解析原因并提供解决方案,同时兼顾界面美化,让模拟效果更专业、更高效。 问题一:历史轨迹与小球残影残留 现象 小球运动后,历史位置的 “残影”…...
并发编程 - go版
1.并发编程基础概念 进程和线程 A. 进程是程序在操作系统中的一次执行过程,系统进行资源分配和调度的一个独立单位。B. 线程是进程的一个执行实体,是CPU调度和分派的基本单位,它是比进程更小的能独立运行的基本单位。C.一个进程可以创建和撤销多个线程;同一个进程中…...
Bean 作用域有哪些?如何答出技术深度?
导语: Spring 面试绕不开 Bean 的作用域问题,这是面试官考察候选人对 Spring 框架理解深度的常见方式。本文将围绕“Spring 中的 Bean 作用域”展开,结合典型面试题及实战场景,帮你厘清重点,打破模板式回答,…...
前端中slice和splic的区别
1. slice slice 用于从数组中提取一部分元素,返回一个新的数组。 特点: 不修改原数组:slice 不会改变原数组,而是返回一个新的数组。提取数组的部分:slice 会根据指定的开始索引和结束索引提取数组的一部分。不包含…...
实战三:开发网页端界面完成黑白视频转为彩色视频
一、需求描述 设计一个简单的视频上色应用,用户可以通过网页界面上传黑白视频,系统会自动将其转换为彩色视频。整个过程对用户来说非常简单直观,不需要了解技术细节。 效果图 二、实现思路 总体思路: 用户通过Gradio界面上…...
