当前位置: 首页 > news >正文

自编码器(一)

        其实自编码器也可以算是自监督学习的一环,因 此我们可以再简单回顾一下自监督学习的框架。如图1.1所示,首先你有大量的没有标注的 数据,用这些没有标注的数据,你可以去训练一个模型,你必须设计一些不需要标注数据的 任务,比如说做填空题或者预测下一个词元等等,这个过程就是自监督学习,有时也叫做预训 练。用这些不用标注数据的任务学完一个模型以后,它可能本身没有什么作用,比如BERT 模型只能做填空题,GPT模型只能够把一句话补完,但是你可以把它用在其他下游的任务里 面。

图1.1 自监督学习框架

        在有BERT 或者GPT模型之前,其实有一个更古老的,不需要用标注数据的任务,就 叫做自编码器,所以你也可以把自编码器看作是一种自监督学习的预训练方法。当然可能不 是所有人都会同意这个观点,有人可能会说这个自编码器,不算是自监督学习。因为这个自编 码器是早在2006 年就有的概念,然后自监督学习是2019年才有这个词汇,所以他们认为自 编码器不算是自监督学习的一环。这个都是见仁见智的问题,这种名词定义的问题,我们就不 用太纠结在这个地方,从自监督学习,即不需要用标注数据来训练这个角度来看,自编码器我 们可以认为它算是自监督学习中的一种方法,它就跟填空或者预测接下来的词元是很类似的 概念,只是用的是另外一种不一样的思路。

         自编码器的原理,以图像为例,如图1.2所示,假设我们有非常大量的图片,在自编码器 里面有两个网络,一个叫做编码器,另外一个叫做解码器,它们是不同的两个网络。编码器把 一张图片读进来,它把这张图片变成一个向量,编码器可能是很多层的卷积神经网络(CNN), 把一张图片读进来,它的输出是一个向量,接下来这个向量会变成解码器的输入。而解码器会 产生一张图片,所以解码器的网络架构可能会像是GAN里面的生成器,它是比如11个向量 输出一张图片。

图1.2   自编码器的流程

          训练的目标是希望编码器的输入跟解码器的输出越接近越好。换句话说,假设你把图片 看作是一个很长的向量的话,我们就希望这个向量跟解码的输出,这个向量,这两个向量他们的距离越接近越好,也有人把这件事情叫做重构(reconstruction)。因为我们就是把一张 图片,压缩成一个向量,接下来解码器要根据这个向量,重建出原来的图片,希望原输入的结 果跟重建后的结果越接近越好。讲到这里读者可能会发现说,这个概念其实跟前面讲的Cycle GAN 模型是类似的。

        在做Cycle GAN 的时候,我们会需要两个生成器,第一个生成器把X域的图片转到Y 域,另外一个生成器把Y域的图片转回来,然后希望最原先的图片跟转完两次后的图片越接 近越好。那这边编码器和解码器,也就是这个自编码器的概念,跟CycleGAN其实是一模一 样的,都是希望所有的图片经过两次转换以后,要跟原来的输出越接近越好,而这个训练的过 程,完全不需要任何的标注数据,你只需要收集到大量的图片,你就可以做这个训练。因此它 是一个无监督学习的方法,跟自监督学习系列中预训练的做法一样,你完全不需要任何的标 注数据。那像这样子这个编码器的输出,有时候我们叫它嵌入。嵌入也称为表示或编码,因为 编码器是一个编码,所以这个有人把这个向量叫做编码,这些其实指的都是同一件事情。

        怎么把训练好的自编码器用在下游的任务里面呢?常见的用法就是把原来的图片可以看 成是一个很长的向量,但这个向量太长了不好处理,这是把这个图片丢到编码器以后,输出 另外一个向量,这个向量我们会让它比较短,比如说只有10维或者100维。接着拿这个新的 向量来做接下来的任务,也就是图片不再是一个很高维度的向量,它通过编码器的压缩以后, 变成了一个低维度的向量,我们再拿这个低维度的向量,来做接下来想做的事情,这就是自编 码器用在下游任务的常见做法。

        由于通常编码器的输入是一个维度非常高的向量,而其输出也就是我们的嵌入(也称为 表示或编码),其是一个非常低维度的向量。比如输入是100×100的图片,100×100那就是 1 万维的向量。如果是RGB那就是3万维的向量,但是通常编码器我们会设得很小,比如说 10、100 这样的量级,所以这个这边会有一个特别窄的部分,本来输入是很宽的,输出也是很 宽的,但是中间特别窄,因此这一段就叫做瓶颈。而编码器做的事情,是把本来很高维度的东 西,转成低维度的东西,把高维度的东西转成低维度的东西又叫做降维。                

相关文章:

自编码器(一)

其实自编码器也可以算是自监督学习的一环,因 此我们可以再简单回顾一下自监督学习的框架。如图1.1所示,首先你有大量的没有标注的 数据,用这些没有标注的数据,你可以去训练一个模型,你必须设计一些不需要标注数据的 任…...

Spring Cloud(Kilburn 2022.0.2版本)系列教程(五) 服务网关(SpringCloud Gateway)

Spring Cloud(Kilburn 2022.0.2版本)系列教程(五) 服务网关(SpringCloud Gateway) 一、服务网关 1.1 什么是网关 在微服务架构中,服务网关是一个至关重要的组件。它作为系统的入口,负责接收客户端的请求,并将这些请求路由到相应的后端服务…...

40分钟学 Go 语言高并发:Go程序性能优化方法论

Go程序性能优化方法论 一、性能指标概述 指标类型关键指标重要程度优化目标CPU相关CPU使用率、线程数、上下文切换⭐⭐⭐⭐⭐降低CPU使用率,减少上下文切换内存相关内存使用量、GC频率、对象分配⭐⭐⭐⭐⭐减少内存分配,优化GC延迟指标响应时间、处理延…...

一文解析Kettle开源ETL工具!

ETL(Extract, Transform, Load)工具是用于数据抽取、转换和加载的软件工具,用于支持数据仓库和数据集成过程。Kettle作为传统的ETL工具备受用户推崇。本文就来详细说下Kettle。 一、Kettle是什么? Kettle 是一款开源的 ETL&#x…...

Tomcat新手成长之路:安装部署优化全解析(上)

文章目录 1.Tomcat简介2.Tomcat原理架构2.1.总体架构2.2.连接器2.2.1.具体功能2.2.2.IO模型2.2.3.逻辑处理流程2.2.4.内部处理流程 2.3.容器2.4.启动过程2.5.请求过程 3.Tomcat适用场景4.Tomcat与其他Web容器对比5.Tomcat安装和启动5.1.Java环境变量5.2.系统服务5.3.启动关闭 6…...

跟我学C++中级篇——通信的数据的传递形式

一、通信的数据传递 在开发程序中,无可避免的会进行数据的传递。这种传递方式有很多种,字节流、消息、Json、参数以及对象甚至可能的方法。那么在传递这些数据时,如何正确的采用更合适的方法,就成为了一个设计的首选的问题。 二…...

C语言 qsort及应用

qsort及应用 qsort:快速排序函数,需要引用stdlib.h文件. void qsort( void *base, size_t num, size_t width, int (__cdecl *compare )(const void *, const void *) ); 参数: base:需要排序的数组 num:数据个数(数组长度) width:每个数据的字节数(sizeof(数据类型)) compa…...

【C语言】连接陷阱探秘(4):检查外部类型

目录 一、外部类型概述 1.1. 外部类型的重要性 1.2. 外部类型在C语言中的使用 1.3. 注意事项 二、常见的外部类型陷阱 2.1. 结构体和联合体的大小不匹配 2.1.1. 示例代码 2.1.2. 正确的做法 2.2. 枚举类型的值不匹配 2.3. 函数签名不一致 2.3.1. 函数签名不一致的问…...

打造双层环形图:基础与高级渐变效果的应用

在数据可视化领域,环形图因其独特的展示方式而广受欢迎。今天,我们将通过ECharts库来创建一个具有双层渐变效果的高级环形图。本文将详细介绍如何实现这种视觉效果。 1. 环形图基础 首先,我们需要了解环形图的基本构成。环形图由内外两个圆…...

【Git】Git 完全指南:从入门到精通

Git 完全指南:从入门到精通 Git 是现代软件开发中最重要的版本控制工具之一,它帮助开发者高效地管理项目,支持分布式协作和版本控制。无论是个人项目还是团队开发,Git 都能提供强大的功能来跟踪、管理代码变更,并保障…...

【mac】mac自动定时开关机和其他常用命令,管理电源设置的工具pmset

一、操作步骤 1、打开终端 2、pmset 是用于管理电源设置的强大工具,我们将使用这个命令 (1)查询当前任务 pmset -g sched查看到我当前的设置是 唤醒电源开启在 工作日的每天早上8点半 上班时不用手动开机了 (2)删…...

【Leecode】Leecode刷题之路第62天之不同路径

题目出处 62-不同路径-题目出处 题目描述 个人解法 思路: todo代码示例:(Java) todo复杂度分析 todo官方解法 62-不同路径-官方解法 方法1:动态规划 思路: 代码示例:(Java&…...

基于深度学习的手势识别算法

基于深度学习的手势识别算法 概述算法原理核心逻辑效果演示使用方式参考文献 概述 本文基于论文 [Simple Baselines for Human Pose Estimation and Tracking[1]](ECCV 2018 Open Access Repository (thecvf.com)) 实现手部姿态估计。 手部姿态估计是从图像或视频帧集中找到手…...

helm部署golang服务

Helm 是 Kubernetes 的一个包管理工具,类似于 Linux 中的 apt 或 yum。它使得在 Kubernetes 上部署和管理应用程序变得更加简单和高效。 安装 https://get.helm.sh/helm-v3.16.3-linux-amd64.tar.gz具体版本号可以在github上看到最新的版本号,然后替换上面链接来获取。gith…...

DreamCamera2相机预览变形的处理

最近遇到一个问题,相机更换了摄像头后,发现人像角度顺时针旋转了90度,待人像角度正常后,发现 预览时图像有挤压变形,最终解决。在此记录 一人像角度的修改 先放示意图 设备预览人像角度如图1所示,顺时针旋…...

Mysql误删表中数据与误删表的恢复方法

查看数据库是否开启binlog日志 mysql> show variables like %log_bin%; ------------------------------------------------------------------------ | Variable_name | Value | ------------------------------------…...

lapack、blas、solver库的区别和联系

LAPACK、BLAS、Solver 库 是数值计算领域的重要组成部分,它们各自的功能和设计目标有所不同,但也存在密切的联系。 1. 概述 库主要功能设计目标BLAS提供基础的线性代数操作,如向量运算、矩阵-向量乘法、矩阵-矩阵乘法等。提供高度优化的基础线性代数操作,作为更高级库的底层…...

deepin 安装 chrome 浏览器

deepin 安装 chrome 浏览器 最近好多小伙伴儿和我说 deepin 无法安装最新的谷歌浏览器 其实是因为最新的 谷歌浏览器 其中的一个依赖需要提前安装 提前安装依赖然后再安装谷歌浏览器就可以了 安装 fonts-liberationsudo apt -y install fonts-liberation安装 chrome 浏览器sudo…...

永久免费的PDF万能水印删除工具

永久免费的PDF万能水印删除工具 1.简介 PDF万能水印删除工具,可以去除99.9%的PDF水印。例如:XObject水印(含图片水印)、文本水印、绘图水印/曲线水印、注释水印、工件水印、剪切路径水印等等。本软件是永久免费,无有…...

Linux网络——NAT/代理服务器

一.NAT技术 1.NAT IP转换 之前我们讨论了, IPv4 协议中, IP 地址数量不充足的问题,NAT 技术就是当前解决 IP 地址不够用的主要手段, 是路由器的一个重要功能。 NAT 能够将私有 IP 对外通信时转为全局 IP. 也就是一种将私有 IP 和全局IP 相互转化的技术方法: 很…...

第19节 Node.js Express 框架

Express 是一个为Node.js设计的web开发框架,它基于nodejs平台。 Express 简介 Express是一个简洁而灵活的node.js Web应用框架, 提供了一系列强大特性帮助你创建各种Web应用,和丰富的HTTP工具。 使用Express可以快速地搭建一个完整功能的网站。 Expre…...

k8s业务程序联调工具-KtConnect

概述 原理 工具作用是建立了一个从本地到集群的单向VPN,根据VPN原理,打通两个内网必然需要借助一个公共中继节点,ktconnect工具巧妙的利用k8s原生的portforward能力,简化了建立连接的过程,apiserver间接起到了中继节…...

Device Mapper 机制

Device Mapper 机制详解 Device Mapper(简称 DM)是 Linux 内核中的一套通用块设备映射框架,为 LVM、加密磁盘、RAID 等提供底层支持。本文将详细介绍 Device Mapper 的原理、实现、内核配置、常用工具、操作测试流程,并配以详细的…...

【笔记】WSL 中 Rust 安装与测试完整记录

#工作记录 WSL 中 Rust 安装与测试完整记录 1. 运行环境 系统:Ubuntu 24.04 LTS (WSL2)架构:x86_64 (GNU/Linux)Rust 版本:rustc 1.87.0 (2025-05-09)Cargo 版本:cargo 1.87.0 (2025-05-06) 2. 安装 Rust 2.1 使用 Rust 官方安…...

Kafka入门-生产者

生产者 生产者发送流程: 延迟时间为0ms时,也就意味着每当有数据就会直接发送 异步发送API 异步发送和同步发送的不同在于:异步发送不需要等待结果,同步发送必须等待结果才能进行下一步发送。 普通异步发送 首先导入所需的k…...

并发编程 - go版

1.并发编程基础概念 进程和线程 A. 进程是程序在操作系统中的一次执行过程,系统进行资源分配和调度的一个独立单位。B. 线程是进程的一个执行实体,是CPU调度和分派的基本单位,它是比进程更小的能独立运行的基本单位。C.一个进程可以创建和撤销多个线程;同一个进程中…...

Razor编程中@Html的方法使用大全

文章目录 1. 基础HTML辅助方法1.1 Html.ActionLink()1.2 Html.RouteLink()1.3 Html.Display() / Html.DisplayFor()1.4 Html.Editor() / Html.EditorFor()1.5 Html.Label() / Html.LabelFor()1.6 Html.TextBox() / Html.TextBoxFor() 2. 表单相关辅助方法2.1 Html.BeginForm() …...

Ubuntu Cursor升级成v1.0

0. 当前版本低 使用当前 Cursor v0.50时 GitHub Copilot Chat 打不开,快捷键也不好用,当看到 Cursor 升级后,还是蛮高兴的 1. 下载 Cursor 下载地址:https://www.cursor.com/cn/downloads 点击下载 Linux (x64) ,…...

SpringAI实战:ChatModel智能对话全解

一、引言:Spring AI 与 Chat Model 的核心价值 🚀 在 Java 生态中集成大模型能力,Spring AI 提供了高效的解决方案 🤖。其中 Chat Model 作为核心交互组件,通过标准化接口简化了与大语言模型(LLM&#xff0…...

加密通信 + 行为分析:运营商行业安全防御体系重构

在数字经济蓬勃发展的时代,运营商作为信息通信网络的核心枢纽,承载着海量用户数据与关键业务传输,其安全防御体系的可靠性直接关乎国家安全、社会稳定与企业发展。随着网络攻击手段的不断升级,传统安全防护体系逐渐暴露出局限性&a…...