R语言结构方程模型(SEM)在生态学领域中的应用
目录
专题一、R/Rstudio简介及入门
专题二、结构方程模型(SEM)介绍
专题三:R语言SEM分析入门:lavaan VS piecewiseSEM
专题四:SEM全局估计(lavaan)在生态学领域高阶应用
专题五:SEM潜变量分析在生态学领域应用
专题六:SEM复合变量分析在生态学领域应用
专题七:局域估计SEM -piecewiseSEM及生态学领域高阶应用
专题八:贝叶斯SEM在生态学领域应用
文中筛选大量应用结构方程模型的经典案例,这些案例来自Nature、Ecology、Ecological Applications、Ecology Letters、Journal of Ecology、Methods in Ecology and Evolution、Oikos、Ecography等主流期刊,多数案例为近期发表成果,具有很大的参考和借鉴价值。
专题一、R/Rstudio简介及入门
(1)R及Rstudio介绍:背景、软件及程序包安装、基本设置等
(2)R语言基本操作,包括向量、矩阵、数据框及数据列表等生成和数据提取等
(3)R语言数据文件读取、整理(清洗)、结果存储等(含tidverse)
(4)R语言基础绘图(含ggplot):基本绘图、排版、发表质量绘图输出存储

专题二、结构方程模型(SEM)介绍
(1)SEM的定义、生态学领域应用及历史回顾
(2)SEM的基本结构
(3)SEM的估计方法
(4)SEM的路径规则
(5)SEM路径参数的含义
(6)SEM分析样本量及模型可识别规则
(7)SEM构建基本流程

专题三:R语言SEM分析入门:lavaan VS piecewiseSEM
1)结构方程模型在生态学研究中的应用介绍及模型要点回顾
2)结构方模型估计方法:局域估计和全局估计的基本工作原理、主要区别及应用情景分析
3)案例群落物种丰富度恢复的直接及间接效应(direct and indirect effects):SEM分析基本流程-lavaan vs piecwiseSEM
(1)模型建立
(2)模型拟合
(3)模型评估
(4)结果展示

练习:
1.根据元模型(meta-model)构建模型
2.练习:火烧干扰后植物群落恢复直接、间接及调节效应分析

专题四:SEM全局估计(lavaan)在生态学领域高阶应用
案例1:湿地生态系统初级生产力的直接和间接效应分析
(1)问题提出、元模型构建
(2)模型构建及模型估计
(3)模型评估:路径增加和删减原则、最优模型筛选方法
(4)结果表达
案例2:火烧干扰后植物群落恢复效果评估-数据缺失和正态性不足数据处理-
案例3:放牧对海拔与生物量关系的影响分析-数据分组分析
案例4:农业用地比例对河口水草多度影响-数据分层/嵌套分析

练习:环境异质性和资源可获得性对不同演替阶段林下维管植物多样性的影响

专题五:SEM潜变量分析在生态学领域应用
1)潜变量的定义、优势及应用背景分析
2)潜变量分析实现基本原理
3)案例1:海岸带米草群落生态恢复表现评估-单潜变量模型构建
4)案例2:城市景观中土地利用对有花植物资源和访花昆虫的直接与间接影响-多个潜变量模型构建

练习案例:植物多样性、能量梯度及环境梯度对动物多样性格局的影响-构建动物多样性潜变量

专题六:SEM复合变量分析在生态学领域应用
1)复合变量的定义及在生态学领域应用情景分析
2)复合变量分析实现途径
3)案例1:生态力与生物多样性形成机制分析-土壤理化因子的多复合变量构建
4)案例2:火烧后植被恢复对物种丰富度影响-复合变量解决非线性问题
5)案例3:气候暖化、海平面上升对湿地植物群落的复合影响-复合变量解决交互作用问题

实例:植物群落物种多样性是否会提高其对入侵植物的抵抗力-多复合变量实现

专题七:局域估计SEM -piecewiseSEM及生态学领域高阶应用
1)piecewiseSEM对内生变量为二项及泊松分布数据的分析
2)混合效应模型+时间自相关问题:气候波动对海草床生态系统食物网结构影响
3)空间自相关问题:NDVI空间变化与气候和多样性关系
4)系统发育相关问题:物种属性、社会性进化特征对海虾领域范围和多度影响-
5)分组数据、交互作用、非线性关系问题分析(实例数据同专题4和6)

练习案例:人类活动、环境条件、物种属性对动物领域大小相对贡献-分组分析和分类变量处理

专题八:贝叶斯SEM在生态学领域应用
1)贝叶斯(bayes)方法简介
2)R语言贝叶斯SEM实现程序包blavaan和brms介绍
3)案例1:气候及生态位重叠程度对田鼠物种丰富度影响:模型比较、直接和间接效应计算(blavaan)
4)案例2:火烧后对植被恢复影响因素-模型拟合、模型比较和评估(brms)

练习案例:生物地理历史因素对北半球森林的初级生产力的影响(brms)

原文阅读
相关文章:
R语言结构方程模型(SEM)在生态学领域中的应用
目录 专题一、R/Rstudio简介及入门 专题二、结构方程模型(SEM)介绍 专题三:R语言SEM分析入门:lavaan VS piecewiseSEM 专题四:SEM全局估计(lavaan)在生态学领域高阶应用 专题五࿱…...
架构-微服务-服务调用Dubbo
文章目录 前言一、Dubbo介绍1. 什么是Dubbo 二、实现1. 提供统一业务api2. 提供服务提供者3. 提供服务消费者 前言 服务调用方案--Dubbo 基于 Java 的高性能 RPC分布式服务框架,致力于提供高性能和透明化的 RPC远程服务调用方案,以及SOA服务治理方案。…...
【SpringBoot问题】IDEA中用Service窗口展示所有服务及端口的办法
1、调出Service窗口 打开View→Tool Windows→Service,即可显示。 2、正常情况应该已经出现SpringBoot,如下图请继续第三步 3、配置Service窗口的项目启动类型。微服务一般是Springboot类型。所以这里需要选择一下。 点击最后一个号,点击Ru…...
OpenCV 图像轮廓查找与绘制全攻略:从函数使用到实战应用详解
摘要:本文详细介绍了 OpenCV 中用于查找图像轮廓的 cv2.findContours() 函数以及绘制轮廓的 cv2.drawContours() 函数的使用方法。涵盖 cv2.findContours() 各参数(如 mode 不同取值对应不同轮廓检索模式)及返回值的详细解析,搭配…...
电机驱动MCU介绍
电机驱动MCU是一种专为电机控制设计的微控制器单元,它集成了先进的控制算法和高性能的功率输出能力。 电机驱动MCU采用高性能的处理器核心,具有快速的运算速度和丰富的外设接口。它内置了专业的电机控制算法,包括PID控制、FOC(Fi…...
人工智能学习框架详解及代码使用案例
人工智能学习框架详解及代码使用案例 人工智能(AI)学习框架是构建和训练AI模型的基础工具,它们提供了一组预定义的算法、函数和工具,使得开发者能够更快速、更高效地构建AI应用。本文将深入探讨人工智能学习框架的基本概念、分类、优缺点、选择要素以及实际应用,并通过代…...
修改Textview中第一个字的字体,避免某些机型人民币¥不显示
在 Android 中,系统提供了三种常用的字体类型,分别是: Serif(衬线字体): 这种字体有明显的衬线或笔画末端装饰,通常用于印刷品和书籍,给人一种正式和优雅的感觉。示例:Typeface.SERI…...
彻底理解quadtree四叉树、Octree八叉树 —— 点云的空间划分的标准做法
1.参考文章: (1)https://www.zhihu.com/question/25111128 这里面的第一个回答,有一幅图: 只要理解的四叉树的构建,对于八叉树的构建原理类比方法完全一样:对于二维平面内的随机分布的这些点&…...
Python时间序列优化之道滑动与累积窗口的应用技巧
大家好,在时间序列数据处理中,通常会进行滑动窗口计算(rolling)和累积窗口计算(expanding)等操作,以便分析时间序列的变化趋势或累积特征。Pandas提供的rolling和expanding函数提供了简单、高效的实现方式,特别适用于金融、气象、…...
Buffered 和 BuffWrite
Buffered和BuffWrite是Java IO包中的两个类,用于提高IO操作的效率。 Buffered是一个缓冲区类,可以将一个InputStream或者一个Reader包装起来,提供了一定的缓冲区大小,可以一次读取多个字节或字符,减少了读取的次数&am…...
【娱乐项目】基于cnchar库与JavaScript的汉字查询工具
Demo介绍 利用了 cnchar 库来进行汉字相关的信息查询,并展示了汉字的拼音、笔画数、笔画顺序、笔画动画等信息用户输入一个汉字后,点击查询按钮,页面会展示该汉字的拼音、笔画数、笔画顺序,并绘制相应的笔画动画和测试图案 cnchar…...
泷羽sec-蓝队基础之网络七层杀伤链 (下)学习笔记
声明! 学习视频来自B站up主 **泷羽sec** 有兴趣的师傅可以关注一下,如涉及侵权马上删除文章,笔记只是方便各位师傅的学习和探讨,文章所提到的网站以及内容,只做学习交流,其他均与本人以及泷羽sec团队无关&a…...
FPGA 开发工程师
目录 一、FPGA 开发工程师的薪资待遇 二、FPGA 开发工程师的工作内容 1. 负责嵌入式 FPGA 方案设计,包括仿真、软件编写和调试等工作。 2. 使用工具软件建立 FPGA 综合工程,编写综合策略和时序约束。 3. 进行 FPGA 设计的优化与程序维护,…...
【Leetcode 每日一题】3250. 单调数组对的数目 I
问题背景 给你一个长度为 n n n 的 正 整数数组 n u m s nums nums。 如果两个 非负 整数数组 ( a r r 1 , a r r 2 ) (arr_1, arr_2) (arr1,arr2) 满足以下条件,我们称它们是 单调 数组对: 两个数组的长度都是 n n n。 a r r 1 arr_1 arr1 是…...
较类中的方法和属性比较
在 Python 中,类中有以下几种常见的方法和属性,它们的作用和用法有所不同。以下是详细比较: --- ### **1. 实例方法** - **定义**:使用 def 定义,第一个参数是 self,表示实例对象本身。 - **作用**&#…...
nVisual可视化资源管理工具
nVisual主要功能 支持自定义层次化的场景结构 与物理世界结构一致,从全国到区域、从室外到室内、从机房到设备。 支持自定义多种空间场景 支持图片、CAD、GIS、3D等多种可视化场景搭建。 丰富的模型库 支持图标、机柜、设备、线缆等多种资源对象创建。 资源可…...
自动类型推导(auto 和 decltype)
一、auto关键字 基本概念 在 C 11 中引入了auto关键字用于自动类型推导。它可以让编译器根据变量的初始化表达式自动推断出变量的类型。这在处理复杂的类型,如迭代器、lambda 表达式的类型等情况时非常有用。 使用示例 例如,在迭代器的使用中…...
新型大语言模型的预训练与后训练范式,谷歌的Gemma 2语言模型
前言:大型语言模型(LLMs)的发展历程可以说是非常长,从早期的GPT模型一路走到了今天这些复杂的、公开权重的大型语言模型。最初,LLM的训练过程只关注预训练,但后来逐步扩展到了包括预训练和后训练在内的完整…...
基于投影寻踪博弈论-云模型的滑坡风险评价
目录 效果一览基本介绍程序设计参考资料 效果一览 基本介绍 基于投影寻踪博弈论-云模型的滑坡风险评价 基于投影寻踪博弈论-云模型的滑坡风险评价是一个复杂而有趣的主题,涉及到博弈论、风险评估和模糊逻辑等领域的交叉应用。这个方法结合了博弈论中的投影寻踪技术…...
WRF-Chem模式安装、环境配置、原理、调试、运行方法;数据准备及相关参数设置方法
大气污染是工农业生产、生活、交通、城市化等方面人为活动的综合结果,同时气象因素是控制大气污染的关键自然因素。大气污染问题既是局部、当地的,也是区域的,甚至是全球的。本地的污染物排放除了对当地造成严重影响外,同时还会在…...
华为云AI开发平台ModelArts
华为云ModelArts:重塑AI开发流程的“智能引擎”与“创新加速器”! 在人工智能浪潮席卷全球的2025年,企业拥抱AI的意愿空前高涨,但技术门槛高、流程复杂、资源投入巨大的现实,却让许多创新构想止步于实验室。数据科学家…...
Android Wi-Fi 连接失败日志分析
1. Android wifi 关键日志总结 (1) Wi-Fi 断开 (CTRL-EVENT-DISCONNECTED reason3) 日志相关部分: 06-05 10:48:40.987 943 943 I wpa_supplicant: wlan0: CTRL-EVENT-DISCONNECTED bssid44:9b:c1:57:a8:90 reason3 locally_generated1解析: CTR…...
Linux简单的操作
ls ls 查看当前目录 ll 查看详细内容 ls -a 查看所有的内容 ls --help 查看方法文档 pwd pwd 查看当前路径 cd cd 转路径 cd .. 转上一级路径 cd 名 转换路径 …...
连锁超市冷库节能解决方案:如何实现超市降本增效
在连锁超市冷库运营中,高能耗、设备损耗快、人工管理低效等问题长期困扰企业。御控冷库节能解决方案通过智能控制化霜、按需化霜、实时监控、故障诊断、自动预警、远程控制开关六大核心技术,实现年省电费15%-60%,且不改动原有装备、安装快捷、…...
linux arm系统烧录
1、打开瑞芯微程序 2、按住linux arm 的 recover按键 插入电源 3、当瑞芯微检测到有设备 4、松开recover按键 5、选择升级固件 6、点击固件选择本地刷机的linux arm 镜像 7、点击升级 (忘了有没有这步了 估计有) 刷机程序 和 镜像 就不提供了。要刷的时…...
如何在网页里填写 PDF 表格?
有时候,你可能希望用户能在你的网站上填写 PDF 表单。然而,这件事并不简单,因为 PDF 并不是一种原生的网页格式。虽然浏览器可以显示 PDF 文件,但原生并不支持编辑或填写它们。更糟的是,如果你想收集表单数据ÿ…...
python报错No module named ‘tensorflow.keras‘
是由于不同版本的tensorflow下的keras所在的路径不同,结合所安装的tensorflow的目录结构修改from语句即可。 原语句: from tensorflow.keras.layers import Conv1D, MaxPooling1D, LSTM, Dense 修改后: from tensorflow.python.keras.lay…...
HarmonyOS运动开发:如何用mpchart绘制运动配速图表
##鸿蒙核心技术##运动开发##Sensor Service Kit(传感器服务)# 前言 在运动类应用中,运动数据的可视化是提升用户体验的重要环节。通过直观的图表展示运动过程中的关键数据,如配速、距离、卡路里消耗等,用户可以更清晰…...
Java求职者面试指南:Spring、Spring Boot、MyBatis框架与计算机基础问题解析
Java求职者面试指南:Spring、Spring Boot、MyBatis框架与计算机基础问题解析 一、第一轮提问(基础概念问题) 1. 请解释Spring框架的核心容器是什么?它在Spring中起到什么作用? Spring框架的核心容器是IoC容器&#…...
基于TurtleBot3在Gazebo地图实现机器人远程控制
1. TurtleBot3环境配置 # 下载TurtleBot3核心包 mkdir -p ~/catkin_ws/src cd ~/catkin_ws/src git clone -b noetic-devel https://github.com/ROBOTIS-GIT/turtlebot3.git git clone -b noetic https://github.com/ROBOTIS-GIT/turtlebot3_msgs.git git clone -b noetic-dev…...
