当前位置: 首页 > news >正文

可编程网络在分布式深度学习通信瓶颈控制中的应用与未来展望

目录

可编程网络在分布式深度学习通信瓶颈控制中的应用与未来展望


可编程网络在分布式深度学习通信瓶颈控制中的应用与未来展望

在分布式深度学习领域,随着模型规模的不断扩大,训练过程中的通信开销已成为制约性能提升的关键因素。传统的分布式训练方法面临高通信延迟和带宽瓶颈,尤其是在处理大型深度学习模型时,这些问题尤为突出。然而,随着可编程网络设备技术的快速发展,我们有机会通过创新手段来控制并优化这些通信瓶颈。

一、网络内聚合原语加速分布式深度学习

通过在网络设备内部实现聚合原语,可以显著加速分布式深度学习的工作负载。这些聚合原语能够在网络层面直接处理数据,减少了数据在主机与网络设备之间的传输次数,从而降低了通信延迟和带宽占用。通过利用现代可编程网络设备,如可编程交换机和路由器,我们实现了高效的网络内聚合,进一步提升了分布式训练的性能。

二、流聚合与网络内数据处理设计

为了降低内存需求和最大化有效带宽使用,我们设计了多种流聚合和网络内数据处理方案。这些方案包括:

  1. 流聚合技术:通过在网络设备内部对多个数据流进行聚合,减少了数据传输的碎片化

相关文章:

可编程网络在分布式深度学习通信瓶颈控制中的应用与未来展望

目录 可编程网络在分布式深度学习通信瓶颈控制中的应用与未来展望 可编程网络在分布式深度学习通信瓶颈控制中的应用与未来展望 在分布式深度学习领域,随着模型规模的不断扩大,训练过程中的通信开销已成为制约性能提升的关键因素。传统的分布式训练方法面临高通信延迟和带宽…...

【论文笔记】Tool Learning with Foundation Models 论文笔记

Tool Learning with Foundation Models 论文笔记 文章目录 Tool Learning with Foundation Models 论文笔记摘要背景:工作: 引言工具学习的发展本文工作(大纲&目录) 背景2.1 工具使用的认知起源2.2 工具分类:用户界…...

Springfox迁移到 Springdoc OpenAPI 3

将项目从 Springfox 迁移到 Springdoc OpenAPI 3 时,主要的工作是将原先使用的 Springfox 注解替换为 Springdoc OpenAPI 3 中的对应注解。虽然 Springdoc OpenAPI 3 基于 OpenAPI 3 规范,并且有一些不同的命名方式和设计理念,但大部分注解的…...

DIY-Tomcat part 3 实现对动态资源的请求

实现ServletRequest package connector;import javax.servlet.RequestDispatcher; import javax.servlet.ServletInputStream; import javax.servlet.ServletRequest; import java.io.BufferedReader; import java.io.IOException; import java.io.InputStream; import java.i…...

3.10 内核 BUG_ON() at xfs_vm_writepage() -> page_buffers()

目录 前言 问题分析 page buffers创建 page buffers丢失 Write-Protect Dirty Page w/o Buffers 问题解决 前言 这个问题发生在3.10.0-514.el7上,并且在RHEL的知识库中快速找到了对应的案例以及解决方案,但是,理解问题如何发生和解决…...

CrystalDiskInfo:硬盘健康监测工具简介和下载

原论坛给你更好的阅读体验:CrystalDiskInfo:硬盘健康监测工具简介和下载 | 波波论坛 引言 在日常使用电脑时,硬盘的健康状态对于系统的稳定性和数据的安全性至关重要。硬盘出现故障可能会导致数据丢失,严重时甚至会使整个系统无…...

Flink cdc同步增量数据timestamp字段相差八小时(分析|解决)不是粘贴复制的!

问题 我使用flink cdc同步mysql到mysql遇到了timestamp字段缺少八小时的问题。很少无语,flink ,cdc,debezium时区都设置了,没有任何效果! 分析 问题出现在mysql binlog身上!!! 因为默认mysql会使用UTC来…...

【docker】9. 镜像操作与实战

镜像操作案例 查找镜像 docker search busybox下载镜像 docker pull busybox:1.36.0查看镜像及列表存储位置 rootLAPTOP-H2EI4I6A:~# docker images busybox REPOSITORY TAG IMAGE ID CREATED SIZE busybox latest 517b897a6a83 2 months a…...

js-显示转换(强制转换)与隐式转换,==与===区别

1.显示转换(强制转换)与隐式转换 1.1显示转换 常见的JavaScript强制转换示例。 (1) 一元加号、一元减号- 值是布尔值,true将被转换为1,false将被转换为0。 let a "123"; let b a; // b的值为123,类型为Nu…...

【通俗理解】步长和学习率在神经网络中是一回事吗?

【通俗理解】步长和学习率在神经网络中是一回事吗? 【核心结论】 步长(Step Size)和学习率(Learning Rate, LR)在神经网络中并不是同一个概念,但它们都关乎模型训练过程中的参数更新。 【通俗解释&#x…...

【PTA】【数据库】【SQL命令】编程题2

数据库SQL命令测试题2 测试题目录 10-1 查询“李琳”老师所授课程的课程名称10-2 查询成绩比所有课程的平均成绩高的学生的学号及成绩10-3 创建带表达式的视图StuView10-4 从视图PerView中查询数据10-5 查询工资高于在“HR”部门工作的所有员工的工资的员工信息10-6 查询选修的…...

Spring Boot林业产品推荐系统:用户指南

摘 要 网络技术和计算机技术发展至今,已经拥有了深厚的理论基础,并在现实中进行了充分运用,尤其是基于计算机运行的软件更是受到各界的关注。加上现在人们已经步入信息时代,所以对于信息的宣传和管理就很关键。因此林业产品销售信…...

【Conda 】Conda 配置文件详解:优化你的包管理与环境设置

目录 引言一、什么是 .condarc 文件?二、.condarc 文件的详细解析与优化2.1 SSL 验证2.2 设置 Conda 下载源2.3 设置环境和包存储路径2.4 代理服务器设置2.5 连接超时设置2.6 显示频道 URL2.7 包版本与构建选择2.8 环境依赖性管理2.9 禁用默认包版本2.10 Conda 配置…...

win10中使用ffmpeg的filter滤镜

1 给视频加文字水印 1.1 添加播放时间 ffmpeg -i input.mp4 -vf "drawtextfontfileC\\:/Windows/fonts/consola.ttf:fontsize30:fontcolorwhite:timecode00\:00\:00\:00:rate25:textTCR\::boxcolor0x000000AA:box1:x20:y20" -y output.mp4 在视频的x20:y20位置添加t…...

设计模式 外观模式 门面模式

结构性模式-外观模式 门面模式 适用场景:如果你需要一个指向复杂子系统的直接接口, 且该接口的功能有限, 则可以使用外观模式。 不用关心后面的查询具体操作 /*** 聚合查询接口*/ RestController RequestMapping("/search") Slf…...

Prophet时间序列算法总结及python实现案例

目录 一、prophet理论总结二、python导入模块方式三、python实现案例3.1帮助信息3.2 案例 四、参考学习 一、prophet理论总结 prophet模型是facebook开源的一个时间序列预测算法。[1][2],该算法主要为处理具有周期性、趋势变化以及缺失值和异常值的时间序列数据而设…...

远程调用 rpc 、 open feign

在学习黑马 springcloud 视频的时候,看到 open feign 使用, 就是 http 封装。 spring框架三部曲,导入依赖,加配置,使用api。...

Redis的几种持久化方式

Redis 提供了两种主要的持久化方式,它们分别是: 1. RDB(Redis Database Snapshotting) RDB 是 Redis 的一种数据持久化方式,它会在指定的时间间隔内对 Redis 中的数据进行快照并保存到硬盘上。 特点: 触…...

论文笔记(五十九)A survey of robot manipulation in contact

A survey of robot manipulation in contact 文章概括摘要1. 引言解释柔顺性控制的概念:应用实例: 2. 需要接触操控的任务2.1 环境塑造2.2 工件对齐2.3 关节运动2.4 双臂接触操控 3. 接触操控中的控制3.1 力控制3.2 阻抗控制3.3 顺应控制 4. 接触操控中的…...

c#控制台程序26-30

26.寻找并输出11至999之间的数m,它满足m,m2和m3均为回文数。所谓回文数是指其各位数字左右对称的整数,例如121,676,94249等。满足上述条件的数如m11,m2121,m31331皆为回文数。请编制函数实现此功能,如果是回文数&#…...

【Linux】shell脚本忽略错误继续执行

在 shell 脚本中,可以使用 set -e 命令来设置脚本在遇到错误时退出执行。如果你希望脚本忽略错误并继续执行,可以在脚本开头添加 set e 命令来取消该设置。 举例1 #!/bin/bash# 取消 set -e 的设置 set e# 执行命令,并忽略错误 rm somefile…...

调用支付宝接口响应40004 SYSTEM_ERROR问题排查

在对接支付宝API的时候,遇到了一些问题,记录一下排查过程。 Body:{"datadigital_fincloud_generalsaas_face_certify_initialize_response":{"msg":"Business Failed","code":"40004","sub_msg…...

黑马Mybatis

Mybatis 表现层&#xff1a;页面展示 业务层&#xff1a;逻辑处理 持久层&#xff1a;持久数据化保存 在这里插入图片描述 Mybatis快速入门 ![在这里插入图片描述](https://i-blog.csdnimg.cn/direct/6501c2109c4442118ceb6014725e48e4.png //logback.xml <?xml ver…...

逻辑回归:给不确定性划界的分类大师

想象你是一名医生。面对患者的检查报告&#xff08;肿瘤大小、血液指标&#xff09;&#xff0c;你需要做出一个**决定性判断**&#xff1a;恶性还是良性&#xff1f;这种“非黑即白”的抉择&#xff0c;正是**逻辑回归&#xff08;Logistic Regression&#xff09;** 的战场&a…...

Vue3 + Element Plus + TypeScript中el-transfer穿梭框组件使用详解及示例

使用详解 Element Plus 的 el-transfer 组件是一个强大的穿梭框组件&#xff0c;常用于在两个集合之间进行数据转移&#xff0c;如权限分配、数据选择等场景。下面我将详细介绍其用法并提供一个完整示例。 核心特性与用法 基本属性 v-model&#xff1a;绑定右侧列表的值&…...

iPhone密码忘记了办?iPhoneUnlocker,iPhone解锁工具Aiseesoft iPhone Unlocker 高级注册版​分享

平时用 iPhone 的时候&#xff0c;难免会碰到解锁的麻烦事。比如密码忘了、人脸识别 / 指纹识别突然不灵&#xff0c;或者买了二手 iPhone 却被原来的 iCloud 账号锁住&#xff0c;这时候就需要靠谱的解锁工具来帮忙了。Aiseesoft iPhone Unlocker 就是专门解决这些问题的软件&…...

安宝特方案丨船舶智造的“AR+AI+作业标准化管理解决方案”(装配)

船舶制造装配管理现状&#xff1a;装配工作依赖人工经验&#xff0c;装配工人凭借长期实践积累的操作技巧完成零部件组装。企业通常制定了装配作业指导书&#xff0c;但在实际执行中&#xff0c;工人对指导书的理解和遵循程度参差不齐。 船舶装配过程中的挑战与需求 挑战 (1…...

Docker 本地安装 mysql 数据库

Docker: Accelerated Container Application Development 下载对应操作系统版本的 docker &#xff1b;并安装。 基础操作不再赘述。 打开 macOS 终端&#xff0c;开始 docker 安装mysql之旅 第一步 docker search mysql 》〉docker search mysql NAME DE…...

JS设计模式(4):观察者模式

JS设计模式(4):观察者模式 一、引入 在开发中&#xff0c;我们经常会遇到这样的场景&#xff1a;一个对象的状态变化需要自动通知其他对象&#xff0c;比如&#xff1a; 电商平台中&#xff0c;商品库存变化时需要通知所有订阅该商品的用户&#xff1b;新闻网站中&#xff0…...

使用LangGraph和LangSmith构建多智能体人工智能系统

现在&#xff0c;通过组合几个较小的子智能体来创建一个强大的人工智能智能体正成为一种趋势。但这也带来了一些挑战&#xff0c;比如减少幻觉、管理对话流程、在测试期间留意智能体的工作方式、允许人工介入以及评估其性能。你需要进行大量的反复试验。 在这篇博客〔原作者&a…...