当前位置: 首页 > news >正文

力扣第 74 题是 搜索二维矩阵

题目描述

给定一个 m x n 的矩阵 matrix 和一个目标值 target,请你编写一个函数来判断目标值 target 是否在矩阵中。

  • 每行的元素按升序排列。
  • 每列的元素按升序排列。

示例 1

输入

matrix = [[1, 4, 7, 11],[2, 5, 8, 12],[3, 6, 9, 16],[10, 13, 14, 17]
]
target = 5

输出

true

示例 2

输入

matrix = [[1, 4, 7, 11],[2, 5, 8, 12],[3, 6, 9, 16],[10, 13, 14, 17]
]
target = 20

输出

false

解题思路

1. 暴力法

最简单的做法是遍历整个矩阵,逐个元素进行比较,看是否等于 target。这种方法的时间复杂度是 O(m * n),其中 m 是矩阵的行数,n 是矩阵的列数。

2. 优化方法(从矩阵的角落开始)

考虑到矩阵的特点:每行和每列都是升序排列的,我们可以利用这一点来提高搜索效率。

一种常见的优化方法是从矩阵的右上角或者左下角开始搜索。这里我们选择从右上角开始:

  • 如果目标值等于当前位置的值,直接返回 true
  • 如果目标值小于当前位置的值,则可以排除当前列,因为该列的元素都大于当前位置的值,移动到当前行的左边(即向左移动)。
  • 如果目标值大于当前位置的值,则可以排除当前行,因为该行的元素都小于当前位置的值,移动到当前列的下方(即向下移动)。

这种方法的时间复杂度是 O(m + n),比暴力法更高效。

实现代码(右上角开始)

#include <stdio.h>
#include <stdbool.h>bool searchMatrix(int** matrix, int matrixSize, int* matrixColSize, int target) {int m = matrixSize; // 矩阵的行数int n = *matrixColSize; // 矩阵的列数int row = 0;int col = n - 1; // 从右上角开始while (row < m && col >= 0) {if (matrix[row][col] == target) {return true; // 找到目标值} else if (matrix[row][col] < target) {row++; // 目标大于当前值,向下移动} else {col--; // 目标小于当前值,向左移动}}return false; // 未找到目标值
}int main() {// 示例矩阵int matrix[4][4] = {{1, 4, 7, 11},{2, 5, 8, 12},{3, 6, 9, 16},{10, 13, 14, 17}};int matrixSize = 4;int matrixColSize = 4;int target = 5;// 使用动态数组传递矩阵int* matrixPtr[4];for (int i = 0; i < matrixSize; i++) {matrixPtr[i] = matrix[i];}bool result = searchMatrix(matrixPtr, matrixSize, &matrixColSize, target);if (result) {printf("Found %d in the matrix.\n", target);} else {printf("%d not found in the matrix.\n", target);}return 0;
}

解释

  1. 矩阵初始化

    • main 函数中,我们定义了一个 4x4 的静态二维数组 matrix,并将其转换为指针数组 matrixPtr,用于传递给 searchMatrix 函数。
  2. 搜索方法

    • searchMatrix 函数从矩阵的右上角开始搜索,通过比较当前值与目标值的大小来决定向下或向左移动。
    • 如果目标值等于当前元素,返回 true;如果目标值小于当前元素,向左移动;如果目标值大于当前元素,向下移动。
  3. 返回值

    • 如果在搜索过程中找到了目标值,返回 true;否则返回 false

时间复杂度和空间复杂度

  • 时间复杂度

    • 每次操作后,我们要么向下移动一行,要么向左移动一列。所以,最多需要 m + n 次操作,其中 m 是矩阵的行数,n 是矩阵的列数。因此时间复杂度是 O(m + n)
  • 空间复杂度

    • 只使用了常数额外空间,所以空间复杂度是 O(1)

相关文章:

力扣第 74 题是 搜索二维矩阵

题目描述 给定一个 m x n 的矩阵 matrix 和一个目标值 target&#xff0c;请你编写一个函数来判断目标值 target 是否在矩阵中。 每行的元素按升序排列。每列的元素按升序排列。 示例 1 输入&#xff1a; matrix [[1, 4, 7, 11],[2, 5, 8, 12],[3, 6, 9, 16],[10, 13, 14…...

[极客大挑战 2019]BabySQL--详细解析

信息搜集 进入界面&#xff1a; 输入用户名为admin&#xff0c;密码随便输一个&#xff1a; 发现是GET传参&#xff0c;有username和password两个传参点。 我们测试一下password点位能不能注入&#xff1a; 单引号闭合报错&#xff0c;根据报错信息&#xff0c;我们可以判断…...

实现Linux平台自定义协议族

一 简介 我们常常在Linux系统中编写socket接收TCP/UDP协议数据&#xff0c;大家有没有想过它怎么实现的&#xff0c;如果我们要实现socket接收自定义的协议数据又该怎么做呢&#xff1f;带着这个疑问&#xff0c;我们一起往下看吧~~ 二 Linux内核函数简介 在Linux系统中要想…...

RL78/G15 Fast Prototyping Board Arduino IDE 平台开发过程

这是一篇基于RL78/G15 Fast Prototyping Board的Arduino IDE开发记录 RL78/G15 Fast Prototyping Board硬件简介&#xff08;背景&#xff09;基础测试&#xff08;方法说明/操作说明&#xff09;开发环境搭建&#xff08;方法说明/操作说明代码结果&#xff09;Arduino IDE RL…...

YOLOv11 NCNN安卓部署

YOLOv11 NCNN安卓部署 前言 yolov11 NCNN安卓部署 目前的帧率可以稳定在20帧左右&#xff0c;下面是这个项目的github地址&#xff1a;https://github.com/gaoxumustwin/ncnn-android-yolov11 上面的检测精度很低时因为这个模型只训练了5个epoch&#xff0c;使用3090训练一个…...

对载入的3dtiles进行旋转、平移和缩放变换。

使用 params: {tx: 129.75845, //模型中心X轴坐标&#xff08;经度&#xff0c;单位&#xff1a;十进制度&#xff09;//小左ty: 46.6839, //模型中心Y轴坐标&#xff08;纬度&#xff0c;单位&#xff1a;十进制度&#xff09;//小下tz: 28, //模型中心Z轴坐标&#xff08;高…...

Rust个人认为将抢占C和C++市场,逐渐成为主流的开发语言

本人使用C开发8年、C#开发15年、中间使用JAVA开发过项目、后期在学习过程中发现了Rust语言说它是最安全的语言&#xff0c;能够解决C、C的痛点、于是抽出一部分时间网上买书&#xff0c;看网上资料进行学习&#xff0c;这一学习起来发现和其它语言比较起来&#xff0c;在编码的…...

在openEuler中使用top命令

在openEuler中使用top命令 概述 top 命令是Linux系统中最常用的实时性能监控工具之一,允许用户查看系统的整体状态,包括CPU使用率、内存使用情况、运行中的进程等。本文档将详细介绍如何在openEuler操作系统中有效利用top命令进行系统监控。 启动top命令 打开终端并输入t…...

探索文件系统,Python os库是你的瑞士军刀

文章目录 探索文件系统&#xff0c;Python os库是你的瑞士军刀第一部分&#xff1a;背景介绍第二部分&#xff1a;os库是什么&#xff1f;第三部分&#xff1a;如何安装os库&#xff1f;第四部分&#xff1a;简单库函数使用方法1. 获取当前工作目录2. 改变当前工作目录3. 列出目…...

【小白学机器学习41】如何从正态分布的总体中去抽样? 获得指定正态分布的样本的2种方法

目录 1 目标&#xff1a;使用2种方法&#xff0c;去从正态分布的总体中去抽样&#xff0c;获得样本 1.1 step1: 首先&#xff0c;逻辑上需要先有符合正态分布的总体population 1.2 从总体中取得样本&#xff0c;模拟抽样的过程 2 从正态分布抽样的方法1 3 从正态分布抽样…...

将VSCode设置成中文语言环境

目录 VSCode默认是英文语言环境&#xff0c;这对于像我这种英语比较菜的人来说不是那么友好 另外也习惯了用中文&#xff0c;所以接下来介绍下如何将VSCode设置成中文语言环境。 1、打开VSCode软件&#xff0c;按快捷键【CtrlShiftP】 2、在弹出的搜索框中输入【configure l…...

Applied Intelligence投稿

一、关于手稿格式&#xff1a; 1、该期刊是一个二区的&#xff0c;模板使用Springer nature格式&#xff0c; 期刊投稿要求&#xff0c;详细期刊投稿指南&#xff0c;大部分按Soringernature模板即可&#xff0c;图片表格声明参考文献命名要求需注意。 2、参考文献&#xff…...

AI-agent矩阵营销:让品牌传播无处不在

矩阵营销是一种通过多平台联动构建品牌影响力的策略&#xff0c;而 AI-agent 技术让这一策略变得更加智能化。AI社媒引流王凭借其矩阵管理功能&#xff0c;帮助品牌在多个平台上实现深度覆盖与精准传播。 1. 矩阵营销的优势 品牌触达更广&#xff1a;多平台联动可以覆盖不同用…...

【0346】Postgres内核 Startup Process 通过 signal 与 postmaster 交互实现 (5)

1. Startup Process 进程 postmaster 初始化过程中, 在进入 ServerLoop() 函数之前,会先通过调用 StartChildProcess() 函数来开启辅助进程,这些进程的目的主要用来完成数据库的 XLOG 相关处理。 如: 核实 pg_wal 和 pg_wal/archive_status 文件是否存在Postgres先前是否发…...

NSSCTF-做题笔记

[羊城杯 2020]easyre 查壳&#xff0c;无壳&#xff0c;64位&#xff0c;ida打开 encode_one encode_tow encode_three 那么我们开始一步一步解密&#xff0c;从最外层开始 def decode_three(encrypted_str):decrypted_str ""for char in encrypted_str:char_code …...

【小白学机器学习35】数据表:整洁数据表,交叉表/列联表,以及两者转化pd.pivot_table()

目录 1 虽然这是个很基础的知识&#xff0c;但是我觉得有必要记录下 2 整洁数据表 3 交叉数据表的2种形式 3.0 交叉表的名字 3.1 2维的交叉表 3.2 用2维表现3维的 3.3 上述内容&#xff0c;具体的markdown文本 4 交叉数据表 4.1 交叉数据表并不整洁 4.2 但是交叉表也…...

springboot旅游管理系统的设计与实现

springboot旅游管理系统的设计与实现 如需源码pc端&#x1f449;&#x1f449;&#x1f449;资源 手机端&#x1f449;&#x1f449;&#x1f449;资源 摘 要 信息化社会内需要与之针对性的信息获取途径&#xff0c;但是途径的扩展基本上为人们所努力的方向&#xff0c;由于…...

k8s 1.28 聚合层部署信息记录

–requestheader-client-ca-file –requestheader-allowed-namesfront-proxy-client –requestheader-extra-headers-prefixX-Remote-Extra- –requestheader-group-headersX-Remote-Group –requestheader-username-headersX-Remote-User –proxy-client-cert-file –proxy-cl…...

自由学习记录(25)

只要有修改&#xff0c;子表就不用元表的参数了&#xff0c;用自己的参数&#xff08;只不过和元表里的那个同名&#xff09; 子表用__index“继承”了父表的值&#xff0c;此时子表仍然是空表 一定是创建这样一个同名的变量在原本空空的子表里&#xff0c; 传参要传具体的变…...

关于函数式接口和编程的解析和案例实战

文章目录 匿名内部类“匿名”在哪里 函数式编程lambda表达式的条件Supplier使用示例 ConsumeracceptandThen使用场景 FunctionalBiFunctionalTriFunctional 匿名内部类 匿名内部类的学习和使用是实现lambda表达式和函数式编程的基础。是想一下&#xff0c;我们在使用接口中的方…...

KubeSphere 容器平台高可用:环境搭建与可视化操作指南

Linux_k8s篇 欢迎来到Linux的世界&#xff0c;看笔记好好学多敲多打&#xff0c;每个人都是大神&#xff01; 题目&#xff1a;KubeSphere 容器平台高可用&#xff1a;环境搭建与可视化操作指南 版本号: 1.0,0 作者: 老王要学习 日期: 2025.06.05 适用环境: Ubuntu22 文档说…...

龙虎榜——20250610

上证指数放量收阴线&#xff0c;个股多数下跌&#xff0c;盘中受消息影响大幅波动。 深证指数放量收阴线形成顶分型&#xff0c;指数短线有调整的需求&#xff0c;大概需要一两天。 2025年6月10日龙虎榜行业方向分析 1. 金融科技 代表标的&#xff1a;御银股份、雄帝科技 驱动…...

【android bluetooth 框架分析 04】【bt-framework 层详解 1】【BluetoothProperties介绍】

1. BluetoothProperties介绍 libsysprop/srcs/android/sysprop/BluetoothProperties.sysprop BluetoothProperties.sysprop 是 Android AOSP 中的一种 系统属性定义文件&#xff08;System Property Definition File&#xff09;&#xff0c;用于声明和管理 Bluetooth 模块相…...

Vue 3 + WebSocket 实战:公司通知实时推送功能详解

&#x1f4e2; Vue 3 WebSocket 实战&#xff1a;公司通知实时推送功能详解 &#x1f4cc; 收藏 点赞 关注&#xff0c;项目中要用到推送功能时就不怕找不到了&#xff01; 实时通知是企业系统中常见的功能&#xff0c;比如&#xff1a;管理员发布通知后&#xff0c;所有用户…...

相关类相关的可视化图像总结

目录 一、散点图 二、气泡图 三、相关图 四、热力图 五、二维密度图 六、多模态二维密度图 七、雷达图 八、桑基图 九、总结 一、散点图 特点 通过点的位置展示两个连续变量之间的关系&#xff0c;可直观判断线性相关、非线性相关或无相关关系&#xff0c;点的分布密…...

stm32进入Infinite_Loop原因(因为有系统中断函数未自定义实现)

这是系统中断服务程序的默认处理汇编函数&#xff0c;如果我们没有定义实现某个中断函数&#xff0c;那么当stm32产生了该中断时&#xff0c;就会默认跑这里来了&#xff0c;所以我们打开了什么中断&#xff0c;一定要记得实现对应的系统中断函数&#xff0c;否则会进来一直循环…...

OpenGL-什么是软OpenGL/软渲染/软光栅?

‌软OpenGL&#xff08;Software OpenGL&#xff09;‌或者软渲染指完全通过CPU模拟实现的OpenGL渲染方式&#xff08;包括几何处理、光栅化、着色等&#xff09;&#xff0c;不依赖GPU硬件加速。这种模式通常性能较低&#xff0c;但兼容性极强&#xff0c;常用于不支持硬件加速…...

无头浏览器技术:Python爬虫如何精准模拟搜索点击

1. 无头浏览器技术概述 1.1 什么是无头浏览器&#xff1f; 无头浏览器是一种没有图形用户界面&#xff08;GUI&#xff09;的浏览器&#xff0c;它通过程序控制浏览器内核&#xff08;如Chromium、Firefox&#xff09;执行页面加载、JavaScript渲染、表单提交等操作。由于不渲…...

【靶场】XXE-Lab xxe漏洞

前言 学习xxe漏洞,搭了个XXE-Lab的靶场 一、搭建靶场 现在需要登录,不知道用户名密码,先随便试试抓包 二、判断是否存在xxe漏洞 1.首先登录抓包 看到xml数据解析,由此判断和xxe漏洞有关,但还不确定xxe漏洞是否存在。 2.尝试xxe 漏洞 判断是否存在xxe漏洞 A.send to …...

Python[数据结构及算法 --- 栈]

一.栈的概念 在 Python 中&#xff0c;栈&#xff08;Stack&#xff09;是一种 “ 后进先出&#xff08;LIFO&#xff09;”的数据结构&#xff0c;仅允许在栈顶进行插入&#xff08;push&#xff09;和删除&#xff08;pop&#xff09;操作。 二.栈的抽象数据类型 1.抽象数…...