EasyDSS视频推拉流技术的应用与安防摄像机视频采集参数
安防摄像机的视频采集参数对于确保监控系统的有效性和图像质量至关重要。这些参数不仅影响视频的清晰度和流畅度,还直接影响存储和网络传输的需求。
安防摄像机图像效果的好坏,由DSP处理器和图像传感器sensor决定,如何利用好已有的硬件资源,调教出一款图像质量上佳的摄像机,和各个厂家自己的视频,图像算法,技术积累息息相关。在操作使用摄像机时,准确理解摄像机里的视频图像采集相关概念参数,将摄像机调整到最好最优状态,才能获得最好的图像视频效果。

1、曝光模式(AE)
1)自动曝光:设备根据环境自动进行曝光参数调节。
2)快门优先:设备通过优先调节快门来调节图像的质量。
3)光圈优先:设备通过优先调节光圈来调节图像的质量。
4)室内50Hz:通过限定快门频率,消除图像的条纹效应。
5)室内60Hz:通过限定快门频率,消除图像的条纹效应。
6)手动曝光:手动调节快门时间,增益,光圈来调节图像质量。
7)低拖影:控制快门的最短时间,以消除抓拍运动人脸时的拖影效应。
2、快门时间
快门是设备镜头前阻挡光线进来的装置。快门时间短,适合拍运动中的场景;快门时间长,适合拍变化较慢的场景。为保证图像质量,快门时间的倒数不能小于帧率值。

EasyDSS作为流媒体服务平台具备高可用性、高并发处理能力和丰富的功能特性,能够轻松应对各种视频推拉流及点播直播需求。EasyDSS还支持多种终端设备,如手机、平板、电脑等。

互联网直播EasyDSS能够为使用者提供高效、稳定、便捷的直播服务。随着技术的不断进步和应用场景的不断拓展,EasyDSS将继续为直播领域带来更多创新和突破。
相关文章:
EasyDSS视频推拉流技术的应用与安防摄像机视频采集参数
安防摄像机的视频采集参数对于确保监控系统的有效性和图像质量至关重要。这些参数不仅影响视频的清晰度和流畅度,还直接影响存储和网络传输的需求。 安防摄像机图像效果的好坏,由DSP处理器和图像传感器sensor决定,如何利用好已有的硬件资源&…...
在CentOS7上更换为阿里云源
在CentOS 7上更换为阿里云YUM源可以通过以下步骤进行: 备份当前的YUM源配置文件 sudo mv /etc/yum.repos.d/CentOS-Base.repo /etc/yum.repos.d/CentOS-Base.repo.backup 下载阿里云的YUM源配置文件 sudo curl -o /etc/yum.repos.d/CentOS-Base.repo http://mirr…...
小程序跳转到本页面并传参
const pages getCurrentPages(); const currentPage pages[pages.length - 1]; // 当前页面路由 const route currentPage.route; // 当前页面参数 const options currentPage.options;// 构建新的 URL 参数 const newOptions {...options,// newParam: newValue }; // 你…...
Vim操作
1. Vim的模式 2.正常模式->编辑模式 在上⽅插⼊⼀⾏: O在下⽅插⼊⼀⾏: o (open)在当前光标前插⼊: i在⾏⾸插⼊: I在当前光标后插⼊: a在⾏尾插⼊: A 3.常见命令行 1、拷贝当前行 yy ,拷贝当前行向下…...
金碟云星空-企微通知
需求背景: 通过企业微信,及时发送金碟云星空消息,比如流程异常、审批节点、等需要关注数据和信息点 需求目的: 及时告警、高响应、自动化 技能要求: 前后端开发工具的运用与开发,本实例使用IDEA 企业…...
Java中的运算符“instanceof“详解
在Java中,instanceof运算符用于检查一个对象是否是某个特定类的实例,或者是否实现了某个特定接口。它返回一个布尔值(true或false),用于在运行时进行类型检查。这在处理多态性时尤其有用,可以帮助我们确定对…...
SVG无功补偿装置MATLAB仿真模型
“电气仔推送”获得资料(专享优惠) 模型简介 SVG(又称ASVG 或STATCOM)是Static Var Generator 的缩写,叫做静止无功发生器。也是做无功补偿的,比SVC 更加先进。其基本原理是将自换相桥式电路通过电抗器或…...
Java 虚拟机:承载 Java 生态的神奇魔盒
在软件开发的世界里,Java 虚拟机(JVM)就像一位智慧的管家,默默守护着 Java 生态系统的运行。它不仅让 Java 实现了"一次编写,到处运行"的梦想,更是成为了多种编程语言的运行平台。让我们一起走进…...
多输入多输出 | Matlab实现TCN-LSTM时间卷积神经网络结合长短期记忆神经网络多输入多输出预测
多输入多输出 | Matlab实现TCN-LSTM时间卷积神经网络结合长短期记忆神经网络多输入多输出预测 目录 多输入多输出 | Matlab实现TCN-LSTM时间卷积神经网络结合长短期记忆神经网络多输入多输出预测预测效果基本介绍程序设计参考资料 预测效果 基本介绍 多输入多输出 | Matlab实现…...
快速排序算法讲解(c基础)
一、快速排序的基本原理 快速排序是一种基于分治策略的高效排序算法。它的基本思想是: 选择一个基准元素(pivot),通过一趟排序将待排序序列分割成两部分,其中一部分的所有元素都比基准元素小,另一部分的所有…...
数据结构--二叉树的创建和遍历
目录 引入 定义 性质 二叉树的创建 迭代法 注意事项: 递归法 注意事项: 二叉树的遍历 深度优先 广度优先 先序遍历(前序遍历) 中序遍历 后序遍历 层序遍历 查找树结构中是否存在某数值 方法一: 方法…...
2024143读书笔记|《遇见》——立在城市的飞尘里,我们是一列忧愁而又快乐的树
2024143读书笔记|《遇见》——立在城市的飞尘里,我们是一列忧愁而又快乐的树 第1章 年年岁岁岁岁年年第2章 遇见第3章 有个叫“时间”的家伙走过第4章 初雪第6章 回首风烟 《华语散文温柔的一支笔:张晓风作品集(共5册)》作者张晓风…...
计算机毕业设计Python+卷积神经网络股票预测系统 股票推荐系统 股票可视化 股票数据分析 量化交易系统 股票爬虫 股票K线图 大数据毕业设计 AI
温馨提示:文末有 CSDN 平台官方提供的学长联系方式的名片! 温馨提示:文末有 CSDN 平台官方提供的学长联系方式的名片! 温馨提示:文末有 CSDN 平台官方提供的学长联系方式的名片! 作者简介:Java领…...
leetcode hot100【LeetCode 48.旋转图像】java实现
LeetCode 48.旋转图像 题目描述 给定一个 n x n 的二维矩阵 matrix,表示一个图像。请你将该图像顺时针旋转 90 度。 说明: 你必须在 原地 修改输入的二维矩阵。你可以假设矩阵的所有元素将会是整数。 示例 1: 输入: [[1, 2, 3],[4, 5, 6],[7, 8, …...
力扣1382:将二叉搜索树便平衡
给你一棵二叉搜索树,请你返回一棵 平衡后 的二叉搜索树,新生成的树应该与原来的树有着相同的节点值。如果有多种构造方法,请你返回任意一种。 如果一棵二叉搜索树中,每个节点的两棵子树高度差不超过 1 ,我们就称这棵二…...
ElasticSearch学习篇19_《检索技术核心20讲》搜推广系统设计思想
目录 主要是包含搜推广系统的基本模块简单介绍,另有一些流程、设计思想的分析。 搜索引擎 基本模块检索流程 查询分析查询纠错 广告引擎 基于标签倒排索引召回基于向量ANN检索召回打分机制:非精确打分精准深度学习模型打分索引精简:必要的…...
实战ansible-playbook:Ansible Vault加密敏感数据(三)
在实际生产环境中,使用 Ansible Vault 来加密敏感数据是一种常见的做法。以下是一个详细的步骤和实际生产环境的使用案例,展示如何使用 Ansible Vault 来加密和管理敏感数据。 1. 安装 Ansible 确保你已经安装了 Ansible。如果还没有安装,可以使用以下命令进行安装: # 在…...
Python 视频合并工具
Python 视频合并工具 1.简介: 这是一个使用 moviepy 和 tkinter 创建的简单图形用户界面(GUI)应用程序,用于合并两个视频文件,并在两个视频之间添加淡入淡出过渡效果。程序的功能是: 选择两个视频&#…...
JavaScript实用工具lodash库
Lodash中文文档: Lodash 简介 | Lodash中文文档 | Lodash中文网 Lodash是一个功能强大、易于使用的JavaScript实用工具库,它提供了丰富的函数和工具,能够方便地处理集合、字符串、数值、函数等多种数据类型。通过使用Lodash,开发者可以大幅…...
mapstruct DTO转换使用
定义一个基础接口 package com.example.mapstruct;import org.mapstruct.Named;import java.time.LocalDate; import java.time.LocalDateTime; import java.time.ZoneId; import java.time.ZonedDateTime; import java.util.Date; import java.util.List;/*** Author zmn Dat…...
C++初阶-list的底层
目录 1.std::list实现的所有代码 2.list的简单介绍 2.1实现list的类 2.2_list_iterator的实现 2.2.1_list_iterator实现的原因和好处 2.2.2_list_iterator实现 2.3_list_node的实现 2.3.1. 避免递归的模板依赖 2.3.2. 内存布局一致性 2.3.3. 类型安全的替代方案 2.3.…...
【人工智能】神经网络的优化器optimizer(二):Adagrad自适应学习率优化器
一.自适应梯度算法Adagrad概述 Adagrad(Adaptive Gradient Algorithm)是一种自适应学习率的优化算法,由Duchi等人在2011年提出。其核心思想是针对不同参数自动调整学习率,适合处理稀疏数据和不同参数梯度差异较大的场景。Adagrad通…...
云启出海,智联未来|阿里云网络「企业出海」系列客户沙龙上海站圆满落地
借阿里云中企出海大会的东风,以**「云启出海,智联未来|打造安全可靠的出海云网络引擎」为主题的阿里云企业出海客户沙龙云网络&安全专场于5.28日下午在上海顺利举办,现场吸引了来自携程、小红书、米哈游、哔哩哔哩、波克城市、…...
Go 语言接口详解
Go 语言接口详解 核心概念 接口定义 在 Go 语言中,接口是一种抽象类型,它定义了一组方法的集合: // 定义接口 type Shape interface {Area() float64Perimeter() float64 } 接口实现 Go 接口的实现是隐式的: // 矩形结构体…...
【CSS position 属性】static、relative、fixed、absolute 、sticky详细介绍,多层嵌套定位示例
文章目录 ★ position 的五种类型及基本用法 ★ 一、position 属性概述 二、position 的五种类型详解(初学者版) 1. static(默认值) 2. relative(相对定位) 3. absolute(绝对定位) 4. fixed(固定定位) 5. sticky(粘性定位) 三、定位元素的层级关系(z-i…...
生成 Git SSH 证书
🔑 1. 生成 SSH 密钥对 在终端(Windows 使用 Git Bash,Mac/Linux 使用 Terminal)执行命令: ssh-keygen -t rsa -b 4096 -C "your_emailexample.com" 参数说明: -t rsa&#x…...
SAP学习笔记 - 开发26 - 前端Fiori开发 OData V2 和 V4 的差异 (Deepseek整理)
上一章用到了V2 的概念,其实 Fiori当中还有 V4,咱们这一章来总结一下 V2 和 V4。 SAP学习笔记 - 开发25 - 前端Fiori开发 Remote OData Service(使用远端Odata服务),代理中间件(ui5-middleware-simpleproxy)-CSDN博客…...
AGain DB和倍数增益的关系
我在设置一款索尼CMOS芯片时,Again增益0db变化为6DB,画面的变化只有2倍DN的增益,比如10变为20。 这与dB和线性增益的关系以及传感器处理流程有关。以下是具体原因分析: 1. dB与线性增益的换算关系 6dB对应的理论线性增益应为&…...
uniapp 字符包含的相关方法
在uniapp中,如果你想检查一个字符串是否包含另一个子字符串,你可以使用JavaScript中的includes()方法或者indexOf()方法。这两种方法都可以达到目的,但它们在处理方式和返回值上有所不同。 使用includes()方法 includes()方法用于判断一个字…...
xmind转换为markdown
文章目录 解锁思维导图新姿势:将XMind转为结构化Markdown 一、认识Xmind结构二、核心转换流程详解1.解压XMind文件(ZIP处理)2.解析JSON数据结构3:递归转换树形结构4:Markdown层级生成逻辑 三、完整代码 解锁思维导图新…...
