当前位置: 首页 > news >正文

SQL 之连接查询

SQL 连接查询:深入理解 JOIN 操作

在数据库管理中,连接查询(JOIN)是一种基本而强大的操作,它允许我们从两个或多个表中检索数据。SQL 中的 JOIN 操作使得数据整合变得简单,这对于数据分析和报告至关重要。本文将深入探讨 SQL 中的连接查询,包括不同类型的 JOIN,它们的用法,以及最佳实践。

1. 理解 JOIN 操作

JOIN 操作用于将两个或多个表中的行结合起来,基于一个共同的字段。这个共同字段通常是一个外键,它在一个表中引用另一个表的主键。

2. 基本的 JOIN 类型

2.1 INNER JOIN

INNER JOIN 是最基本的 JOIN 类型,它返回两个表中匹配的行。如果两个表中没有匹配的行,则该行不会被包含在结果集中。

 

sql

SELECT columns
FROM table1
INNER JOIN table2
ON table1.common_field = table2.common_field;

2.2 LEFT JOIN (LEFT OUTER JOIN)

LEFT JOIN 返回左表(第一个表)的所有行,即使右表(第二个表)中没有匹配的行。如果右表中没有匹配的行,结果将包含 NULL。

 

sql

SELECT columns
FROM table1
LEFT JOIN table2
ON table1.common_field = table2.common_field;

2.3 RIGHT JOIN (RIGHT OUTER JOIN)

LEFT JOIN 相反,RIGHT JOIN 返回右表的所有行,即使左表中没有匹配的行。

 

sql

SELECT columns
FROM table1
RIGHT JOIN table2
ON table1.common_field = table2.common_field;

2.4 FULL JOIN (FULL OUTER JOIN)

FULL JOIN 返回两个表中所有匹配的行,无论它们是否在另一个表中有匹配项。如果一个表中没有匹配的行,结果将包含 NULL。

 

sql

SELECT columns
FROM table1
FULL JOIN table2
ON table1.common_field = table2.common_field;

3. 使用 JOIN 的最佳实践

3.1 确保索引

为了提高 JOIN 操作的性能,确保连接字段上有索引。索引可以显著减少查询时间,尤其是在处理大型数据集时。

3.2 选择正确的 JOIN 类型

根据你的数据需求选择合适的 JOIN 类型。如果你只需要两个表中都有的行,使用 INNER JOIN。如果你需要包含一个表中的所有行,即使另一个表中没有匹配,使用 LEFT JOINRIGHT JOIN

3.3 避免复杂的 JOIN 链

尽量避免长链的 JOIN 操作,因为它们会降低查询性能。如果可能,尝试将多个 JOIN 操作分解成多个步骤,或者使用临时表来简化查询。

3.4 使用别名简化查询

使用表别名和列别名可以使 JOIN 操作更清晰,尤其是在处理多个表和复杂的查询时。

 

sql

SELECT t1.column1, t2.column2
FROM table1 AS t1
JOIN table2 AS t2
ON t1.common_field = t2.common_field;

4. 结论

连接查询是 SQL 中的一个强大工具,它允许我们从多个表中检索和整合数据。了解不同类型的 JOIN 以及它们的用法对于编写有效和高效的 SQL 查询至关重要。通过遵循最佳实践,我们可以确保我们的查询既快速又准确。

相关文章:

SQL 之连接查询

SQL 连接查询:深入理解 JOIN 操作 在数据库管理中,连接查询(JOIN)是一种基本而强大的操作,它允许我们从两个或多个表中检索数据。SQL 中的 JOIN 操作使得数据整合变得简单,这对于数据分析和报告至关重要。…...

vscode切换anaconda虚拟环境解释器不成功

问题: 切换解释器之后运行代码还是使用的原来的解释器 可以看到,我已经切换了“nlp”解释器,我的nltk包只在“nlp”环境下安装了,但是运行代码依然是"torch"解释器,所以找不到“nltk”包。 在网上找了各种…...

一个实用的 Maven localRepository 工具

目录 1 现状2 当前解决3 更好的解决3.1 下载 Maven localRepository 工具包3.2 上传本地 localRepository 包3.3 清理 localRepository 中指定后缀的文件 1 现状 在使用 Maven 时,我们可能会经常与本地仓库和私服仓库打交道。 例如对于本地仓库,因为某…...

目标检测,图像分割,超分辨率重建

目标检测和图像分割 目标检测和图像分割是计算机视觉中的两个不同任务,它们的输出形式也有所不同。下面我将分别介绍这两个任务的输出。图像分割又可以分为:语义分割、实例分割、全景分割。 语义分割(Semantic Segmentation)&…...

微信小程序 城市点击后跳转 并首页显示被点击城市

在微信小程序中,渲染出城市列表后,如何点击城市,就跳转回到首页,并在首页显示所点击的城市呢? 目录 一、定义点击城市的事件 二、首页的处理 首页:点击成都市会跳转到城市列表 城市列表:点击…...

Linux - nfs服务器

五、nfs服务器 1、基础 NFS服务器可以让PC将网络中的NFS服务器共享的目录挂载到本地端的文件系统中,而在本地端的系统 中看来,那个远程主机的目录就好像是自己的一个磁盘分区一样。 由于NFS支持的功能比较多,而不同的功能都会使用不同的程…...

uniapp图片上传预览uni.chooseImage、uni.previewImage

文章目录 1.上传图片2.预览图片 1.上传图片 uni.chooseImage(OBJECT) 从本地相册选择图片或使用相机拍照。 App端如需要更丰富的相机拍照API(如直接调用前置摄像头),参考plus.camera 微信小程序从基础库 2.21.0 开始, wx.choos…...

C++ 字符串中数字识别

【问题描述】 输入一个字符串,含有数字和非数字字符,如“sumabc234;while(abc700)tab{ass346;bssabc267;}”,将其中连续的数字作为一个整数,依次存放到一个数组nums中。例如,234放在nums[0],700放在nums[1…...

学术中常见理论归纳总结-不定期更新

1.信息传播类 1.1 扩散创新理论 创新扩散理论是传播效果研究的经典理论之一,是由美国学者埃弗雷特罗杰斯(E.M.Rogers)于20世纪60年代提出的一个关于通过媒介劝服人们接受新观念、新事物、新产品的理论,侧重大众传播对社会和文化的影响。 1927-1941年进行的“艾奥瓦杂交玉…...

ModelSim怎么修改字体及大小

点击TOOLS 选择PERFERENCES选择下一级菜单的TEXTFONT/CHOOSE/选择字体和大小最后不要忘记点apply再退出...

图片预处理技术介绍4——降噪

图片预处理 大家好,我是阿赵。   这一篇将两种基础的降噪算法。   之前介绍过均值模糊和高斯模糊。如果从降噪的角度来说,模糊算法也算是降噪的一类,所以之前介绍的两种模糊可以称呼为均值降噪和高斯降噪。不过模糊算法对原来的图像特征的…...

Scrapy管道设置和数据保存

1.1 介绍部分: 文字提到常用的Web框架有Django和Flask,接下来将学习一个全球范围内流行的爬虫框架Scrapy。 1.2 内容部分: Scrapy的概念、作用和工作流程 Scrapy的入门使用 Scrapy构造并发送请求 Scrapy模拟登陆 Scrapy管道的使用 Scrapy中…...

D84【python 接口自动化学习】- pytest基础用法

day84 pytest常用断言类型 学习日期&#xff1a;20241130 学习目标&#xff1a;pytest基础用法 -- pytest常用断言类型 学习笔记&#xff1a; 常用断言类型 代码实践 def test_assert():assert 11assert 1!2assert 1<2assert 2>1assert 1>1assert 1<1assert a…...

如何正确书写sh文件/sh任务?bash任务

正确书写xx.sh文件的方式为&#xff1a; source /usr/local/miniconda3/bin/activate condaEnv export CUDA_VISIBLE_DEVICES0 cd /hy-tmp/test export PYTHONPATH"xxx:$PYTHONPATH" python AAA.py python BBB.py python CCC.py 直接运行&#xff1a; bash xx.sh 即可…...

多线程篇-5--线程分类(线程类型,springboot中常见线程类型,异步任务线程)

常见的线程类型包括用户线程&#xff08;User Threads&#xff09;、守护线程&#xff08;Daemon Threads&#xff09;、主线程&#xff08;Main Thread&#xff09;、工作线程&#xff08;Worker Threads&#xff09;和线程池中的线程。 一、用户线程&#xff08;User Thread…...

docker快速部署gitlab

文章目录 场景部署步骤默认账号密码效果 场景 新增了一台机器, 在初始化本地开发环境&#xff0c;docker快速部署gitlab 部署步骤 编写dockerfile version: 3.7services:gitlab:image: gitlab/gitlab-ce:latestcontainer_name: gitlabrestart: alwayshostname: gitlabenviron…...

C# 数据类型详解:掌握数据类型及操作为高效编码奠定基础

本文将带你深入了解C#中各种数据类型的特点、用途和最佳实践&#xff0c;让你不仅能熟练运用基本类型&#xff0c;还能掌握如何在实际项目中做出最合适的选择。 目录 C#基本语法 C#数据类型 C#类型转换 C#变量常量 C#基本语法 在学习C#之前我们要先知道C#的基础构建是由哪些…...

burp2

声明&#xff01; 学习视频来自B站up主 **泷羽sec** 有兴趣的师傅可以关注一下&#xff0c;如涉及侵权马上删除文章&#xff0c;笔记只是方便各位师傅的学习和探讨&#xff0c;文章所提到的网站以及内容&#xff0c;只做学习交流&#xff0c;其他均与本人以及泷羽sec团队无关&a…...

[ACTF2020 新生赛]BackupFile--详细解析

信息搜集 让我们寻找源文件&#xff0c;目录扫描&#xff1a; 找到了/index.php.bak文件&#xff0c;也就是index.php的备份文件。 后缀名是.bak的文件是备份文件&#xff0c;是文件格式的扩展名。 我们访问这个路径&#xff0c;就会直接下载该备份文件。 我们把.bak后缀删掉…...

循环神经网络(RNN)简述

RNN及其变体 1、概述 (一)、概念 RNN(Recurrent Neural Network), 中文称作循环神经网络, 它一般以序列数据为输入, 通过网络内部的结构设计有效捕捉序列之间的关系特征, 一般也是以序列形式进行输出。 RNN的循环机制使模型隐层**上一时间步产生的结果, 能够作为当下时间步…...

Docker 离线安装指南

参考文章 1、确认操作系统类型及内核版本 Docker依赖于Linux内核的一些特性&#xff0c;不同版本的Docker对内核版本有不同要求。例如&#xff0c;Docker 17.06及之后的版本通常需要Linux内核3.10及以上版本&#xff0c;Docker17.09及更高版本对应Linux内核4.9.x及更高版本。…...

基于Flask实现的医疗保险欺诈识别监测模型

基于Flask实现的医疗保险欺诈识别监测模型 项目截图 项目简介 社会医疗保险是国家通过立法形式强制实施&#xff0c;由雇主和个人按一定比例缴纳保险费&#xff0c;建立社会医疗保险基金&#xff0c;支付雇员医疗费用的一种医疗保险制度&#xff0c; 它是促进社会文明和进步的…...

mac:大模型系列测试

0 MAC 前几天经过学生优惠以及国补17K入手了mac studio,然后这两天亲自测试其模型行运用能力如何&#xff0c;是否支持微调、推理速度等能力。下面进入正文。 1 mac 与 unsloth 按照下面的进行安装以及测试&#xff0c;是可以跑通文章里面的代码。训练速度也是很快的。 注意…...

LLaMA-Factory 微调 Qwen2-VL 进行人脸情感识别(二)

在上一篇文章中,我们详细介绍了如何使用LLaMA-Factory框架对Qwen2-VL大模型进行微调,以实现人脸情感识别的功能。本篇文章将聚焦于微调完成后,如何调用这个模型进行人脸情感识别的具体代码实现,包括详细的步骤和注释。 模型调用步骤 环境准备:确保安装了必要的Python库。…...

多元隐函数 偏导公式

我们来推导隐函数 z z ( x , y ) z z(x, y) zz(x,y) 的偏导公式&#xff0c;给定一个隐函数关系&#xff1a; F ( x , y , z ( x , y ) ) 0 F(x, y, z(x, y)) 0 F(x,y,z(x,y))0 &#x1f9e0; 目标&#xff1a; 求 ∂ z ∂ x \frac{\partial z}{\partial x} ∂x∂z​、 …...

数据库——redis

一、Redis 介绍 1. 概述 Redis&#xff08;Remote Dictionary Server&#xff09;是一个开源的、高性能的内存键值数据库系统&#xff0c;具有以下核心特点&#xff1a; 内存存储架构&#xff1a;数据主要存储在内存中&#xff0c;提供微秒级的读写响应 多数据结构支持&…...

STM32标准库-ADC数模转换器

文章目录 一、ADC1.1简介1. 2逐次逼近型ADC1.3ADC框图1.4ADC基本结构1.4.1 信号 “上车点”&#xff1a;输入模块&#xff08;GPIO、温度、V_REFINT&#xff09;1.4.2 信号 “调度站”&#xff1a;多路开关1.4.3 信号 “加工厂”&#xff1a;ADC 转换器&#xff08;规则组 注入…...

Python异步编程:深入理解协程的原理与实践指南

&#x1f49d;&#x1f49d;&#x1f49d;欢迎莅临我的博客&#xff0c;很高兴能够在这里和您见面&#xff01;希望您在这里可以感受到一份轻松愉快的氛围&#xff0c;不仅可以获得有趣的内容和知识&#xff0c;也可以畅所欲言、分享您的想法和见解。 持续学习&#xff0c;不断…...

更新 Docker 容器中的某一个文件

&#x1f504; 如何更新 Docker 容器中的某一个文件 以下是几种在 Docker 中更新单个文件的常用方法&#xff0c;适用于不同场景。 ✅ 方法一&#xff1a;使用 docker cp 拷贝文件到容器中&#xff08;最简单&#xff09; &#x1f9f0; 命令格式&#xff1a; docker cp <…...

LSTM-XGBoost多变量时序预测(Matlab完整源码和数据)

LSTM-XGBoost多变量时序预测&#xff08;Matlab完整源码和数据&#xff09; 目录 LSTM-XGBoost多变量时序预测&#xff08;Matlab完整源码和数据&#xff09;效果一览基本介绍程序设计参考资料 效果一览 基本介绍 普通的多变量时序已经用腻了&#xff0c;审稿人也看烦了&#…...