当前位置: 首页 > news >正文

计算机毕业设计PySpark+Hadoop中国城市交通分析与预测 Python交通预测 Python交通可视化 客流量预测 交通大数据 机器学习 深度学习

温馨提示:文末有 CSDN 平台官方提供的学长联系方式的名片!

温馨提示:文末有 CSDN 平台官方提供的学长联系方式的名片!

温馨提示:文末有 CSDN 平台官方提供的学长联系方式的名片!

作者简介:Java领域优质创作者、CSDN博客专家 、CSDN内容合伙人、掘金特邀作者、阿里云博客专家、51CTO特邀作者、多年架构师设计经验、多年校企合作经验,被多个学校常年聘为校外企业导师,指导学生毕业设计并参与学生毕业答辩指导,有较为丰富的相关经验。期待与各位高校教师、企业讲师以及同行交流合作

主要内容:Java项目、Python项目、前端项目、PHP、ASP.NET、人工智能与大数据、单片机开发、物联网设计与开发设计、简历模板、学习资料、面试题库、技术互助、就业指导等

业务范围:免费功能设计、开题报告、任务书、中期检查PPT、系统功能实现、代码编写、论文编写和辅导、论文降重、长期答辩答疑辅导、腾讯会议一对一专业讲解辅导答辩、模拟答辩演练、和理解代码逻辑思路等。

收藏点赞不迷路  关注作者有好处

                                         文末获取源码

感兴趣的可以先收藏起来,还有大家在毕设选题,项目以及论文编写等相关问题都可以给我留言咨询,希望帮助更多的人

介绍资料

任务书:PySpark+Hadoop中国城市交通分析与预测

一、研究背景与意义

随着城市化进程的加速和人口的不断增加,中国城市交通问题日益突出,主要表现为交通拥堵、交通事故频发、公共交通不足、环境污染等。这些问题不仅严重影响了城市居民的生活质量,还制约了城市经济的可持续发展。为应对这些挑战,基于大数据的城市交通分析与预测平台应运而生,成为提升城市交通管理水平、优化交通资源配置的重要手段。大数据技术的快速发展为城市交通分析与预测提供了强大的技术支持。通过收集、处理和分析海量的交通数据,可以揭示交通流量的变化规律、预测交通拥堵情况,为城市交通规划和管理提供科学依据。

二、研究目标与内容

本研究旨在构建一套基于大数据的中国城市交通分析与预测平台,利用PySpark和Hadoop技术,提升城市交通管理效率,优化交通资源配置,实现城市交通的可持续发展。具体研究内容如下:

  1. 构建大数据交通分析平台
    • 集成多种数据源,实现交通数据的实时采集、处理和分析。
    • 研究如何从不同渠道(如交通监控系统、车载传感器、智能手机等)收集交通数据,并通过爬虫技术获取互联网上的公开交通数据(如导航软件数据、社交媒体数据等)。
  2. 交通流量预测
    • 基于历史数据和实时数据,运用机器学习、深度学习等算法,预测未来交通流量和拥堵情况。
    • 探讨适用于城市交通流量预测的建模方法,包括传统的回归模型、时间序列模型以及机器学习模型(如GRNN、LSTM等)。
    • 通过对比分析不同模型的预测效果,选择最优的预测模型。
  3. 优化交通策略
    • 根据预测结果,提出针对性的交通优化策略,如信号灯配时调整、道路规划优化、公共交通线路优化等。
    • 评估策略的实施效果,通过仿真实验和实际案例分析,验证优化策略的有效性和可行性。
  4. 可视化展示
    • 设计并实现一个基于WebGIS的交通分析与预测可视化平台,展示交通运行状况、预测结果及优化策略效果。
    • 通过可视化技术直观展示交通数据,为决策者提供直观的数据支持。
三、研究方法与技术路线
  1. 数据采集与处理
    • 构建数据采集系统,实现数据的实时采集。
    • 对采集到的数据进行清洗、格式化、融合等预处理工作,确保数据的准确性和一致性。
  2. 建模与预测
    • 构建交通流量预测模型,包括传统的回归模型、时间序列模型和机器学习模型。
    • 进行模型训练和测试,通过对比分析选择最优的预测模型。
  3. 优化策略制定
    • 基于预测结果提出优化策略,并进行策略实施效果评估。
    • 采用仿真实验和实际案例分析,验证优化策略的有效性和可行性。
  4. 可视化平台设计与实现
    • 设计并实现一个基于WebGIS的交通分析与预测可视化平台,包括前端展示和后端数据处理。
    • 测试平台功能,确保平台稳定运行。
四、研究计划与进度安排
  1. 前期准备阶段(1-2个月)
    • 调研国内外相关研究现状,明确研究目标和内容,制定详细的研究计划。
  2. 数据采集与处理阶段(3-4个月)
    • 构建数据采集系统,实现数据的实时采集和预处理。
  3. 建模与预测阶段(5-6个月)
    • 构建交通流量预测模型,进行模型训练和测试,选择最优的预测模型。
  4. 优化策略制定阶段(7-8个月)
    • 基于预测结果提出优化策略,并进行策略实施效果评估。
  5. 可视化平台设计与实现阶段(9-10个月)
    • 设计并实现交通分析与预测可视化平台。
  6. 总结与验收阶段(11-12个月)
    • 整理研究成果,撰写论文。
    • 提交研究成果进行验收,包括论文答辩和平台展示。
五、预期成果
  1. 构建一套基于大数据的中国城市交通分析与预测平台,实现交通数据的实时采集、处理和分析。
  2. 提出一套有效的交通流量预测模型和优化策略,为城市交通管理提供科学依据。
  3. 设计并实现一个交通分析与预测可视化平台,为决策者提供直观的数据支持。
六、参考文献
  • 相关学术论文和文献综述
  • Hadoop和PySpark相关技术文档
  • 交通数据分析与预测领域的专业书籍和报告

以上内容详细描述了《PySpark+Hadoop中国城市交通分析与预测》的研究背景、目标、内容、方法、计划与预期成果,为项目的顺利推进提供了清晰的指导。

运行截图

推荐项目

上万套Java、Python、大数据、机器学习、深度学习等高级选题(源码+lw+部署文档+讲解等)

项目案例

优势

1-项目均为博主学习开发自研,适合新手入门和学习使用

2-所有源码均一手开发,不是模版!不容易跟班里人重复!

🍅✌感兴趣的可以先收藏起来,点赞关注不迷路,想学习更多项目可以查看主页,大家在毕设选题,项目代码以及论文编写等相关问题都可以给我留言咨询,希望可以帮助同学们顺利毕业!🍅✌

源码获取方式

🍅由于篇幅限制,获取完整文章或源码、代做项目的,拉到文章底部即可看到个人联系方式。🍅

点赞、收藏、关注,不迷路,下方查看👇🏻获取联系方式👇🏻

相关文章:

计算机毕业设计PySpark+Hadoop中国城市交通分析与预测 Python交通预测 Python交通可视化 客流量预测 交通大数据 机器学习 深度学习

温馨提示:文末有 CSDN 平台官方提供的学长联系方式的名片! 温馨提示:文末有 CSDN 平台官方提供的学长联系方式的名片! 温馨提示:文末有 CSDN 平台官方提供的学长联系方式的名片! 作者简介:Java领…...

Linux的文件系统

这里写目录标题 一.文件系统的基本组成索引节点目录项文件数据的存储扇区三个存储区域 二.虚拟文件系统文件系统分类进程文件表读写过程 三.文件的存储连续空间存放方式缺点 非连续空间存放方式链表方式隐式链表缺点显示链接 索引数据库缺陷索引的方式优点:多级索引…...

【Vue3】从零开始创建一个VUE项目

【Vue3】从零开始创建一个VUE项目 手动创建VUE项目附录 package.json文件报错处理: Failed to get response from https://registry.npmjs.org/vue-cli-version-marker 相关链接: 【VUE3】【Naive UI】<NCard> 标签 【VUE3】【Naive UI】&…...

9)语法分析:半倒装和全倒装

在英语中,倒装是一种特殊的句子结构,其中主语和谓语(或助动词)的位置被颠倒。倒装分为部分倒装和全倒装两种类型,它们的主要区别在于倒装的程度和使用的场合。 1. 部分倒装 (Partial Inversion) 部分倒装是指将助动词…...

Scala关于成绩的常规操作

score.txt中的数据: 姓名,语文,数学,英语 张伟,87,92,88 李娜,90,85,95 王强,78,90,82 赵敏,92,8…...

使用Java实现度分秒坐标转十进制度的实践

目录 前言 一、度分秒的使用场景 1、表示方法 2、两者的转换方法 3、区别及使用场景 二、Java代码转换的实现 1、确定计算值的符号 2、数值的清洗 3、度分秒转换 4、转换实例 三、总结 前言 在地理信息系统(GIS)、导航、测绘等领域&#xff0c…...

根据后台数据结构,构建搜索目录树

效果图: 数据源 const data [{"categoryidf": "761525000288210944","categoryids": "766314364226637824","menunamef": "经济运行","menunames": "经济运行总览","tempn…...

食品计算—FoodSAM: Any Food Segmentation

🌟🌟 欢迎来到我的技术小筑,一个专为技术探索者打造的交流空间。在这里,我们不仅分享代码的智慧,还探讨技术的深度与广度。无论您是资深开发者还是技术新手,这里都有一片属于您的天空。让我们在知识的海洋中…...

2411rust,1.83

原文 1.83.0稳定版 新的常能力 此版本包括几个说明在常环境中运行代码可干的活的大型扩展.这是指编译器在编译时必须计算的所有代码:常和静项的初值,数组长度,枚举判定值,常模板参数及可从(constfn)此类环境调用的函数. 引用静.当前,除了静项的初化器式外,禁止常环境引用静…...

tomcat加载三方包顺序

共享库 tomcat支持多个webapp共享一个三方库,而不需要每个webapp都引入该三方库 tomcat加载类顺序 bootstrap:加载jvm提供的类system:加载$CATALINA_HOME/bin下的bootstrap.jar,commons-daemon.jar,tomcat-juli.jar三个包//加载$CLASSPATH…...

计算机的错误计算(一百七十一)

摘要 探讨 MATLAB 中秦九韶(Horner)多项式的错误计算。 例1. 用秦九韶(Horner)算法计算(一百零七)例1中多项式 直接贴图吧: 这样,MATLAB 给出的仍然是错误结果,因为准…...

js对于json的序列化、反序列化有哪几种方法

在JavaScript中,对JSON(JavaScript Object Notation)进行序列化(将对象转换为JSON字符串)和反序列化(将JSON字符串转换为对象)是常见的操作。以下是一些常用的方法: 序列化&#xf…...

Linux——基础命令(2) 文件内容操作

目录 ​编辑 文件内容操作 1.Vim (1)移动光标 (2)复制 (3)剪切 (4)删除 (5)粘贴 (6)替换,撤销,查找 (7&#xff…...

简单搭建qiankun的主应用和子应用并且用Docker进行服务器部署

在node18环境下,用react18创建qiankun主应用和两个子应用,react路由用V6版本,都在/main路由下访问子应用,用Dockerfile部署到腾讯云CentOS7.6服务器的8000端口进行访问,且在部署过程中进行nginx配置以进行合理的路由访…...

Python知识分享第十六天

“”" 故事7: 小明把煎饼果子技术传给徒弟的同时, 不想把独创配方传给他, 我们就要加私有. 问: 既然不想让子类用, 为什么要加私有? 答: 私有的目的不是不让子类用, 而是不让子类直接用, 而必须通过特定的 途径或者方式才能使用. 大白话: ATM机为啥要设计那么繁琐, 直接…...

管家婆财贸ERP BR045.大类存货库存数量明细表

最低适用版本: C系列 23.8 插件简要功能说明: 库存数量明细表支持按存货展示数据更多细节描述见下方详细文档 插件操作视频: 进销存类定制插件--大类存货库存数量明细表 插件详细功能文档: 应用中心增加菜单【大类存货库存数…...

Pytorch-GPU版本离线安装

最近在复现一项深度学习的工作,发现自己的pytorch是装的cpu版的(好像当时是直接加清华源,默认是cpu版本)。从官网在线下载速度太慢,还时不时断开连接,我们可以配置conda的清华源去这个问题,但是考虑到是在用…...

k8s 1.28 二进制安装与部署

第一步 :配置Linux服务器 #借助梯子工具 192.168.196.100 1C8G kube-apiserver、kube-controller-manager、kube-scheduler、etcd、kubectl、haproxy、keepalived 192.168.196.101 1C8G kube-apiserver、kube-controller-manager、kube-scheduler、etcd、kubectl、…...

【C语言】扫雷游戏(一)

我们先设计一个简单的9*9棋盘并有10个雷的扫雷游戏。 1,可以用数组存放,如果有雷就用1表示,没雷就用0表示。 2,排查(2,5)这个坐标时,我们访问周围的⼀圈8个位置黄色统计周围雷的个数是1。排查(8,6)这个坐标时&#xf…...

二分法篇——于上下边界的扭转压缩间,窥见正解辉映之光(1)

前言 二分法,这一看似简单却又充满哲理的算法,犹如一道精巧的数学之门,带领我们在问题的迷雾中找到清晰的道路。它的名字虽简单,却深藏着智慧的光辉。在科学的浩瀚星空中,二分法如一颗璀璨的星辰,指引着我们…...

day52 ResNet18 CBAM

在深度学习的旅程中,我们不断探索如何提升模型的性能。今天,我将分享我在 ResNet18 模型中插入 CBAM(Convolutional Block Attention Module)模块,并采用分阶段微调策略的实践过程。通过这个过程,我不仅提升…...

中南大学无人机智能体的全面评估!BEDI:用于评估无人机上具身智能体的综合性基准测试

作者:Mingning Guo, Mengwei Wu, Jiarun He, Shaoxian Li, Haifeng Li, Chao Tao单位:中南大学地球科学与信息物理学院论文标题:BEDI: A Comprehensive Benchmark for Evaluating Embodied Agents on UAVs论文链接:https://arxiv.…...

在rocky linux 9.5上在线安装 docker

前面是指南,后面是日志 sudo dnf config-manager --add-repo https://download.docker.com/linux/centos/docker-ce.repo sudo dnf install docker-ce docker-ce-cli containerd.io -y docker version sudo systemctl start docker sudo systemctl status docker …...

数据链路层的主要功能是什么

数据链路层(OSI模型第2层)的核心功能是在相邻网络节点(如交换机、主机)间提供可靠的数据帧传输服务,主要职责包括: 🔑 核心功能详解: 帧封装与解封装 封装: 将网络层下发…...

鱼香ros docker配置镜像报错:https://registry-1.docker.io/v2/

使用鱼香ros一件安装docker时的https://registry-1.docker.io/v2/问题 一键安装指令 wget http://fishros.com/install -O fishros && . fishros出现问题:docker pull 失败 网络不同,需要使用镜像源 按照如下步骤操作 sudo vi /etc/docker/dae…...

32单片机——基本定时器

STM32F103有众多的定时器,其中包括2个基本定时器(TIM6和TIM7)、4个通用定时器(TIM2~TIM5)、2个高级控制定时器(TIM1和TIM8),这些定时器彼此完全独立,不共享任何资源 1、定…...

TCP/IP 网络编程 | 服务端 客户端的封装

设计模式 文章目录 设计模式一、socket.h 接口(interface)二、socket.cpp 实现(implementation)三、server.cpp 使用封装(main 函数)四、client.cpp 使用封装(main 函数)五、退出方法…...

数据库正常,但后端收不到数据原因及解决

从代码和日志来看,后端SQL查询确实返回了数据,但最终user对象却为null。这表明查询结果没有正确映射到User对象上。 在前后端分离,并且ai辅助开发的时候,很容易出现前后端变量名不一致情况,还不报错,只是单…...

ArcPy扩展模块的使用(3)

管理工程项目 arcpy.mp模块允许用户管理布局、地图、报表、文件夹连接、视图等工程项目。例如,可以更新、修复或替换图层数据源,修改图层的符号系统,甚至自动在线执行共享要托管在组织中的工程项。 以下代码展示了如何更新图层的数据源&…...

Linux-进程间的通信

1、IPC: Inter Process Communication(进程间通信): 由于每个进程在操作系统中有独立的地址空间,它们不能像线程那样直接访问彼此的内存,所以必须通过某种方式进行通信。 常见的 IPC 方式包括&#…...